
SwordFight: Enabling a New Class of Phone-to-Phone
Action Games on Commodity Phones

Zengbin Zhang
UC Santa Barbara

zengbin@cs.ucsb.edu

David Chu
Microsoft Research

davidchu@microsoft.com

Xiaomeng Chen
University of Science and

Technology of China
monachen@mail.ustc.edu.cn

Thomas Moscibroda
Microsoft Research Asia
moscitho@microsoft.com

ABSTRACT
Mobile gaming is a big driver of app marketplaces. However,
few mobile games deliver truly distinctive gameplay experi-
ences for ad hoc collocated users. As an example of such an
experience, consider a sword fight dual between two users
facing each other where each user’s phone simulates a sword.
With phone in hand, the users’ thrusts and blocks translate
to attacks and counterattacks in the game. Such Phone-to-
Phone Mobile Motion Games (MMG) represent interesting
and novel gameplay for ad hoc users in the same location.
One enabler for an MMG game like sword fight is continuous,
accurate distance ranging. Existing ranging schemes cannot
meet the stringent requirements of MMG games: speed, ac-
curacy and noise robustness. In this work, we design FAR,
a new ranging scheme that can localize at 12Hz with 2cm
median error while withstanding up to 0dB noise, multipath
and Doppler effect issues. Our implementation runs on com-
modity smartphones and does not require any external in-
frastructure. Moreover, distance measurement accuracy is
comparable to that of Kinect, a fixed-infrastructure motion
capture system. Evaluation on users playing two prototype
games indicate that FAR can fully support dynamic game
motion in real-time.

Categories and Subject Descriptors
C.3 [Special Purpose and Application-Based Systems]:
Real-time and embedded systems; C.5.3 [Computer Sys-
tem Implementation]: Microcomputers—Portable devices

Keywords
acoustic localization, mobile gaming, mobile motion games,
smartphones

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiSys’12, June 25–29, 2012, Low Wood Bay, Lake District, UK.
Copyright 2012 ACM 978-1-4503-1301-8/12/06 ...$10.00.

1. INTRODUCTION
Mobile gaming constitutes a large and fast growing in-

dustry. Estimates on the total worldwide market size dif-
fer, but typical numbers are in the order of $10 billion for
2011 [1]. Furthermore, continued growth in the underlying
forces – smartphone and tablet sales, mobile Internet sub-
scribers and app downloads – all point to a bright future for
the industry.

The landscape of today’s mobile games is rich and var-
ied. However, one commonality among existing multiplayer
games is that they invariably require the players to be phys-
ically passive, look at the screen, and conduct game action
via interaction with the screen. The success of Nintendo Wii
or Xbox Kinect in console gaming on the other hand, has
demonstrated a demand for much more interactive games in
which gameplay directly involves the user’s physical activ-
ity. In this paper, we report on the development of a novel
class of Phone-to-Phone Mobile Motion Games (MMG) that
achieve a similar level of physical interactivity. These games
are characterized by the fact that the position, location, ori-
entation, or movement of the phone is an integral part of
game play. In some cases, the phone may even serve as the
equivalent of a Wii-stick, and players may not even need to
look at the screen while playing. However, in contrast to
Wii or Kinect, we do not rely on any external infrastructure
such as a microphone array or cameras; MMG games are
played purely phone-to-phone.

Consider for example the following SwordFight game. The
rules are simple: Two players wield their phones, and try to
attack each other. A player can attack the opponent by tap-
ping the screen. If player A attacks, and her phone is within
20cm of the opponent’s phone, she wins. However, attacking
costs energy, and an attack can only be sustained for 4 sec-
onds before the energy has completely depleted. Energy can
be regained over time when the player remains in non-attack
mode. Thus, one strategy to win is for a player to survive
the opponent’s attack by quickly moving his phone in such
a way that it maintains sufficient distance from the oppo-
nent’s phone; and then counter-attack while the opponent’s
energy is depleted.

The key enabling technology for a game like SwordFight is
the ability to conduct very fast, accurate, and robust distance
measurements between the phones, so that at any moment
during play, both phones have precise distance information.
Studies have shown that in order to sustain high-speed ac-

tion games a lag of more than 100ms decreases user satisfac-
tion and degrades player performance, and a lag of 200ms
is unacceptable [2]. Therefore, we need to be able to con-
duct phone-to-phone distance measurements at a rate of at
least 10Hz. The measurements also have to be accurate –
with no more than a few centimeters of error – and robust
in the face of mobility, noise, and networking issues. In the
absence of any external infrastructure, the combination of
these three requirements constitutes a significant technical
barrier on commodity phones, and no existing solution is
able to meet them simultaneously.

It is well-known that acoustic sound can be used for dis-
tance measurements. Works such as [16, 18] have demon-
strated that under ideal circumstances (e.g., no mobility)
and with sufficient computation time, accurate ranging can
be achieved even on commodity phones. The problem is
that in an motion game scenario, the circumstances are far
from ideal and the requirements substantially more chal-
lenging. First, existing ranging protocols are based on the
assumption that phone positions remain static during the
process of taking a measurement. For a game like Sword-
Fight, this is not a valid assumption as human hand speed
can be as high as 2m/s. Furthermore, with two phones mov-
ing towards or apart from each other at high speed, aspects
such as the Doppler effect need to be considered and dealt
with. Secondly, acoustic ranging requires the use of expen-
sive cross-correlation algorithms in order to determine the
precise time-of-arrival of the sound signal. Cross-correlation
algorithms are computationally intensive and cannot be run
without modification on phones at sufficient speed to en-
able a SwordFight game. Third, not only computation, but
also the communication (acoustic tone exchanges, protocol
handshakes, etc) incurs a fundamental and significant delay.

In this paper, we address these challenges in a systematic
manner. Our first contribution is to enable real time dis-
tance measurement by replacing the standard computation-
ally intensive cross-correlation algorithm for finding sound
peaks with a more sophisticated and efficient multi-stage
algorithm. Our algorithm employs autocorrelation to fun-
damentally reduce computational complexity while preserv-
ing accuracy by targeting cross-correlation to a very narrow
search window. Our second contribution is to employ a new
pipelined streaming execution strategy that overlaps proto-
col communication and algorithm computation. While over-
lapping communication and computation is a well-known
technique, in our case, this overlapping comes with a twist –
we overlap the sound waves of the ranging protocol in addi-
tion to the typical networking data packets. It turns out that
both pipelining and streaming are critical in order to realize
real time measurements. Our third contribution is to under-
stand and tackle the practical sources of measurement error
during motion gaming for increased robustness. The first
set of robustness optimizations addresses mobility and the
effects of Doppler shift on the underlying ranging protocol.
The second set of optimizations addresses environmental ro-
bustness from effects such as ambient noise, multipath and
acoustic tone loss.

Combining these techniques, we develop FAR – a Fast, Ac-
curate and Robust localization system that enables two po-
tentially fast moving phones to keep accurate distance esti-
mates to each other. Distance measurements can be taken
at a rate of 12Hz with 2cm median error while withstand-
ing up to 0dB noise (e.g., players or spectators talking while

playing), multipath (e.g. as encountered in small rooms)
and the Doppler effect. To practically demonstrate the sys-
tem’s ability to enable novel gaming concepts, we develop
two prototype MMG games: SwordFight and ChaseCat.1

In both isolated-player and in-situ gameplay experiments,
we find that FAR’s distance measurements are comparable
to Kinect, a dedicated fixed-infrastructure motion capture
system. We have publicly tested our games at various loca-
tions with real players; and our experience shows that the
games are fun and intuitive to play. We anticipate that with
the high-speed ranging API we provide in this paper, many
more MMG games can be developed.

2. ASSUMPTIONS & REQUIREMENTS
Enabling a game like SwordFight requires a distance rang-

ing subroutine that allows two phones to keep accurate and
up-to-date distance information between each other even in
the face of noise and high mobility. This poses a unique set
of challenges:

• Phone-to-Phone: MMG games should be playable ev-
erywhere at any time. We do not rely on any external
infrastructure beyond the two phones.

• Commodity phones: We want MMG games to run on
commodity hardware and OSs. This implies handling is-
sues of on-phone sensor sampling rates, computation ca-
pacity, or audio playing and recording capabilities, whether
they arise from the hardware, (typically closed source) au-
dio driver, or OS.

• Measurement Frequency: To create the sensation of
continuous real-time distance information, the ranging in-
frastructure must sample user movement as frequently as
possible, at a rate of 10Hz or more [2].

• High Accuracy: Gameplay relies on the high accuracy
of distance measurements even at a high degree of phone
mobility. Specifically, we aim for a target accuracy of
within 2-3cm up to a normal range of human social inter-
action of up to approximately 3m with line of sight.

• User Mobility: In a game like SwordFight, players should
be able to play without artificial restrictions on their body
or hand movement. The underlying ranging infrastructure
must be capable of supporting the speed of natural human
hand movement (up to 2m/s) [8].

• Practical in Most Environments: As it is natural for
players and spectators to talk during a game, and because
a game may be played indoors or close to walls, the un-
derlying distance measurement framework must be robust
against the impact of high ambient noise levels, multi-path
effects and tone loss.

3. BACKGROUND
In this section, we review the well-known time-of-flight

acoustic ranging principle that we share in common with
prior phone-based acoustic localization work [16, 18], and
we outline why these existing approaches are unsuited for
enabling Mobile Motion Gaming.

1See http://research.microsoft.com/mobile-motion-gaming
for a video illustrating the gameplay of SwordFight.

http://research.microsoft.com/mobile-motion-gaming

3.1 Acoustic Distance Measurement
The essential idea is to have two phones A and B play and

record known audio tones one after another. These tones
are often based on some form of pseudorandom sequences.
Each phone records its own emitted tone as well as the tone
originating from the remote phone. Suppose A emits a tone
first and records this tone’s arrival at its microphone at time
tA1. B records the arrival of this tone at time tB1. Next,
B emits a tone, which is recorded at the microphones of B
and A at times tB2 and tA2, respectively. The distance d
between the phones can now be calculated as

d =
1

2
· c · [(tA2 − tA1)− (tB2 − tB1)], (1)

where c is the speed of sound.
Existing schemes [16, 18] follow a traditional execution

strategy of Play/Record then Compute and Exchange (see
Figure 2(a)). The figure shows that the two phones start
the Recording step at the same time, and then send out the
tones one after another (Tone Playing step). Guard periods
are inserted prior to and following each tone to guarantee
that the tones do not overlap, and that the Recording is
complete.

Upon completion of the recording, the next step is for each
phone to determine the exact local time when each tone was
received. This is done by applying a cross-correlation algo-
rithm to each of its recorded sound samples (Computation
step). Cross-correlation is a standard signal processing tech-
nique that searches for the best match between a recorded
sample and a reference signal (the best match is indicated
by a sharp peak in the cross-correlation). It has been widely
used in various ranging systems, e.g. [4, 6, 10, 16, 18, 19, 23]
and is computed as

CC(t0)=

∑
t∈W [X(t)−X(t)][T (t− t0)−T (t− t0)]√∑
t∈W [X(t)−X(t)]2

∑0
t=1−L[T (t)−T (t)]2

where X(t) is the recorded sound sequence, T (t), t ∈ [−L +

1, 0] is the reference signal of length L, X(t) =
∑

t∈W X(t)

L
,

T (t) =
∑0

t=1−L T (t)

L
, W = [t0 − L + 1, t0]. For each t0,

the computation complexity is O(|W |) = O(L), and thus
O(B ∗ L) if we have B recorded sound samples. Finally,
once the cross-correlation peaks are found at each phone,
the corresponding tone arrival time-stamps are exchanged
between the two phones e.g., via 3G or WiFi (Measurement
Exchange step), and the distance can be computed.

3.2 Limitations
As pertains to MMG, existing phone-to-phone acoustic

localization schemes all have the same drawbacks: they are
too slow to serve the needs of MMG games due to the large
measurement delay, and they are not designed for highly-
mobile systems.

• The traditional execution strategy of Play/Record then
Compute and Exchange is unsuited for high frequency
measurements, as it takes too much time.

• Cross-correlation is well-known to be computationally ex-
pensive, as it grows super-linearly in the size of the ref-
erence signal L and the recorded sound sequence T . For
example, although [18] applied an energy detection mod-
ule to reduce the search space in the sound sequence T ,
the reported time for one measurement is still 800ms.

Sound

Ambient Noise

Cancellation

Autocorrelation(s)

Smoothing
Playing

Tone

START

r
e
s
e
t

Tone detected?

Multipath Filter

Cross-correlation

yes

no

Measurement Exchange WiFi

Distance Calculation

Low Pass Filter

Doppler

Predictor
Loss

Detector

<stream of distance values>

Recording

Compute

&

Exchange

Figure 1: FAR Architecture

• Existing protocols are not designed for highly-mobile sys-
tems. They assume that during the course of a measure-
ment, the phones remain stationary and if they are not,
results will be erroneous.

Finally, in addition to these more fundamental reasons, there
are also purely practical system design issues that prevent
us from building MMG games on top of existing ranging
infrastructure:

• Commodity phones do not offer tight timing guarantees
on the operation of the playing and recording controls, and
thus systematically incur large and unpredictable delays.
Specifically, as we show in §8, there is a lag of high mag-
nitude and high variance between the time a playback is
initiated and the actual time the tone is played. For exam-
ple, the lag is 60-90ms for both Nexus One phone running
Android 2.3.4 and Samsung Focus phone running Win-
dows Phone 7.5. This caps the frequency at which phones
can emit tones. Based on our empirical observations, this
lag occurs so commonly among commodity smartphones
that we cannot simply discount it as a software- or device-
specific phenomenon.

4. FAR SYSTEM DESIGN
In this section, we introduce FAR, our fast, accurate, and

robust distance measurement system that serves as an API
to phone-to-phone MMG games like SwordFight. Meeting
the requirements in §2 in the face of the limitations in §3.2
is not easy and drives us to a novel system design as well as
numerous optimizations at both the algorithm and systems
level.

The key goal of the FAR system is to systematically im-
prove upon existing phone-to-phone ranging schemes in two
directions – i) by making them faster and reducing delays
(See §5); and ii) by making them more robust in the face
of mobility (See §6) – while at the same time keeping the
required degree of accuracy.

Figure 1 illustrates the FAR architecture that achieves these
goals. Upon initiation, each of the major stages Playing,
Recording, Computation and Exchange happen continuously.
§5 discusses the dynamic arrangement of these stages. Com-
putation contains the main algorithmic contributions of our
work. It is sequenced as follows.

1. An ambient noise filter mitigates environmental noise
such as from shouting, talking and crowd noise com-
mon during gameplay.

2. One or more lightweight autocorrelators work in tan-
dem to detect the presence of tone signatures.

3. Smoothing reduces the impact of anomalous local min-
ima which are the result of sound distortion played and
captured by commodity hardware.

4. Multipath readings (e.g. reflection from nearby ob-
jects) are filtered out to identify the actual tone re-
ceived. If no tones are detected, expensive cross-correlation
is not engaged.

5. The cross-correlator identifies the tone reception time
stamp for accurate timing information.

6. The phones exchange their measured time stamps via
WiFi. Failure to receive data here (due to signal jam-
ming or tone misdetection in the autocorrelation step)
over prolonged durations results in the loss detector
automatically signaling a protocol reset.

7. The exchanged data is used in distance calculation.
The distance calculation also informs the Doppler pre-
dictor, which adjusts the number of autocorrelators to
use in the next round. This enhances measurement
accuracy at high mobility.

8. A final low pass filter smooths the calculation before
emitting the distance value to the game.

5. FAST DISTANCE MEASUREMENTS
In this section, we present the set of techniques that allows

FAR to conduct distance measurements at high frequency and
with low lag. To see how our techniques impact lag and fre-
quency, it is useful to again consider the traditional execu-
tion strategy as illustrated in Figure 2(a). In the traditional
execution strategy, the lag of each individual measurement
is comprised of the following components:

• Tone Length: Time spent on sending out each tone.
Since one measurement requires that both phones send
out tones, the measurement lag includes two tone lengths.

• Audio Playing Lag: Delay between the time of calling
the Play() API and the time when the tone is actually
sent out from the speaker. This delay is observed across
platforms on both Android and Windows Phone.

• Sound Propagation Delay: Time it takes for the sound
to reach the other phone over the air.

• Buffering Delay: Time from when the tone has been
fully recorded until when the audio driver passes the recorded
buffer to the application layer. The reason for the delay
is that the audio driver delivers a buffer only when the
buffer is full, regardless of whether the tone has arrived.

• Tone Detection Computation Time: Time required
to compute a recorded buffer and determine the exact
time-stamp when the tone arrived.

• Measurement Exchange & Distance Calculation:
Time it takes for the two phones to exchange their time-
stamps, and compute the final distance measurement re-
sult using Equation (1).

L/2

A
u
to
c
o
r
r
e
la
ti
o
n

Original recorded stream

Delayed stream

Repeated

Pattern
First

Pattern

Repeated

Pattern
First

Pattern

Moving

Correlation

Window

time

Coincided Patterns

Generate High Peak

Figure 3: Autocorrelation-based Tone Detection.
When sliding the correlation window, at a certain
time, the repeated pattern in the original stream
will coincide with the first pattern of the delayed
stream, which generates a high correlation peak.

If we want to achieve measurement frequency above the
10Hz required for MMG games, we must address these de-
lays across the board. FAR accomplishes this through an
efficient system architecture and set of core acoustic signal
processing algorithms. §5.1 discusses how we substantially
reduce the tone-detection computation time by a very ef-
ficient algorithm. §5.2 introduces pipelining to further im-
prove measurement frequency, and streaming to circumvent
widespread system lags. Lastly, §5.3 summarizes how we
reduce other components of delay.

5.1 Fast Tone Detection Algorithm
As discussed in §2, the problem of relying upon cross-

correlation for tone detection is that its computation over-
head is high. To find the start time of a tone of length L
in a buffer of size B, a total of O(B ∗L) multiplications are
required. Our key observation is that instead of running the
cross-correlation directly, we can first use a computationally
much more efficient autocorrelation primitive. Autocorrela-
tion’s strength is that it is much more efficient than cross-
correlation at finding repeating patterns in data sequences.
However, autocorrelation does not give us an exact estimate
of the tone’s location because of its much flatter peak style.
Therefore, after applying autocorrelation, we employ (as a
second and third step) a simple smoothing algorithm and
then a small-scale cross-correlation in a narrow search win-
dow centered around the smoothed autocorrelation peak.
We now discuss these steps in detail.

Step 1: Autocorrelation-based Tone Detection. The
basic methodology of autocorrelation we use is shown in Fig-
ure 3. Autocorrelation can only detect correlation of a signal
to itself. Therefore, we let each phone send out a tone con-
sisting of a pseudorandom sequence followed immediately
by an exact copy of this sequence. To detect this tone, the
receiver phone records the incoming stream X(t), and then
generates a second stream Y (t) which is an identical copy of
X(t), except that it is delayed by half the tone length L, i.e,
Y (t) = X(t − L/2). The receiver now correlates X(t) and
Y (t) (i.e., the incoming steam is correlated with a copied,
delayed version of itself) in a moving correlation window of
length L/2. This is done by incrementally computing for

Phone 1 Phone 2 Phone 1

RecordingTone Playing

Round i

Start

Round i+1

Start

Round i

Output

Measurement Delay

Audio

Playing Lag

sound propagation

time

...

>200ms ~ 400m s

Buffering

Delay

(a) Traditional Execution Strategy

Phone 1 Phone 2 Phone 2Phone 1 Phone 1Phone 2

Measurement Exchange

& Distance Calculation

Tone Detection

Computation

Round i

Start

Round i+1

Start

Round i+2

Start

Round i+3

Start

Round i+4

Start

Round i

Output

Round i+1

Output

Round i+2

Output
Measurement

Delay

sound propagation

time

Thread 1

Thread 2

Thread 3

(b) FAR Execution Strategy

Figure 2: Execution Strategies

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60

A
m

pl
itu

de

Time (ms)

Sound Samples

(a) Captured Sound Samples

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60

A
m

pl
itu

de

Time (ms)

Auto Corr
Smoothed Auto Corr

Auto Corr Peak
Cross Corr

(b) Auto- and Cross-correlation Peaks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60

A
m

pl
itu

de

Time (ms)

Smoothed Auto Corr
Auto Corr Peak

Search Win
Cross Corr

(c) Peak Search in a Small Window

Figure 4: Fast Tone Detection Algorithm. (a) Recording of received tone with repeating patterns. (b) While
cross-correlation peaks are sharp, the autocorrelation peak is flat and has an offset to the pattern’s actual
location. (c) Cross-correlation is used in a small window around the autocorrelation peak to find the precise
location of the pattern.

each time step t0 the function

R(L/2, t0) =

∑
t∈W [X(t)−X(t)][Y (t)− Y (t)]√∑

t∈W [X(t)−X(t)]2
∑

t∈W [Y (t)− Y (t)]2

where X(t) =
∑

t∈W X(t)

L/2
, Y (t) =

∑
t∈W Y (t)

L/2
, and W = [t0−

L/2 + 1, t0]. Higher autocorrelation values correspond to
closer correlations of X(t) and Y (t) at t0. The idea is that
because phones send two identical sequences in each tone,
at a certain time slot, one of the repeated patterns in X(t)
will match a first pattern in the delayed stream Y (t), thus
generating a large autocorrelation peak as shown in Figure 3.

The benefit of the above method is that we can compute
R(L/2, t0) in O(1) time. To see this, consider that the above
expression can be rewritten as follows.

R(L/2, t0) =
L
2
X̂Y − X̂Ŷ√

[L
2
X̂X − X̂X̂][L

2
Ŷ Y − Ŷ Ŷ]

where

X̂Y =
∑
t∈W

[X(t)Y (t)], X̂X =
∑
t∈W

[X(t)X(t)]

Ŷ Y =
∑
t∈W

[Y (t)Y (t)], X̂ =
∑
t∈W

X(t), Ŷ =
∑
t∈W

Y (t).

Note that all these variables can be computed in O(1) time

with a standard moving window method. Taking X̂ as an

example, given X̂(t0), we can compute X̂(t0+1) as follows.

X̂(t0+1) = X̂(t0) + X(t0 + 1)−X(t0 − L/2 + 1).

Since X̂(t0), X(t0 +1) and X(t0−L/2+1) are all known,

X̂(t0 + 1) is computed in O(1). The other variables can also
be updated in the same way. R(L/2, t0 + 1) can thus be
obtained in O(1) time based on the variables at t0. For a
buffer of size B, this autocorrelation solution has complexity
O(B), which is much faster than O(B ∗ L) via traditional
cross-correlation.

Inaccuracy of Autocorrelation based Tone Detec-
tion. Unfortunately, we cannot rely solely on autocorre-
lation to find the tone peak as the result will be inaccurate.
Figure 4(b) shows the output of the autocorrelation step. As
can be seen, there is a noticeable offset between the auto-
correlation peak and second cross-correlation peak (a sharp
line). In an ideal scenario, these two peaks should perfectly
align. The reason for this discrepancy is twofold. First,
autocorrelation fundamentally has a much flatter peak. In-
tuitively, if a time slot’s autocorrelation value is high, its
neighboring time slots’ values are also high. Second, the off-
set can arise due to signal distortion of the tone after propa-
gation. This can result in up to 10cm error in the final result
even in quiet environments as we show in the evaluation. For

these reasons, we cannot rely exclusively on autocorrelation
for tone detection. Rather, we seek to combine the respec-
tive benefits of cross-correlation and autocorrelation.

Step 2: Smoothing of Autocorrelation Peak. In or-
der to obtain cleaner peaks, we smooth the autocorrelation
curves within a 10ms window. Note that this smoothing
process is necessary as the raw autocorrelation output can
have many local maxima due to environmental noise.

Step 3: Small Scale Cross-correlation. We interpret
the smoothed autocorrelation curve as an indicator for the
location of the tone, then we search in a small window
S around the autocorrelation peak using standard cross-
correlation to detect the precise tone location (see Figure 4(c)).
The computation overhead of the combined algorithm now is
O(B+ |S|∗L), which is still much smaller than O(B∗L), as-
suming that the autocorrelation indicator allows us to choose
sufficiently small |S|.
Choosing the Search Window Size |S|. The above
discussion reveals an interesting design trade-off concern-
ing the selection of the window size |S|. A smaller |S| yields
faster cross-correlation computation, but risks mis-detecting
a tone altogether because it is outside the searching window.
This is especially true in noisy environments where the off-
set between cross-correlation and autocorrelation peaks can
be large. Based on our empirical measurements, we set our
window size to a very conservative size of 100 samples (offset
by −80 to +20 around the detected peak), which is sufficient
even at high noise. The fact that the search window is not
symmetric around the detected peak is probably due to re-
flected signals, which may generate higher autocorrelation
peaks after the direct signal’s peak.

5.2 Pipelined Streaming Execution Strategy
With the preceding reductions in tone detection compu-

tation time, we next introduce FAR’s pipelined streaming ex-
ecution strategy for boosting measurement frequency. Its
two key improvements upon the traditional execution strat-
egy are that (1) it employs pipelining to increase measure-
ment frequency by overlapping computation time with tone
transmission, and (2) it employs streaming to minimize mea-
surement lag by removing Audio Playing Lag. Figure 2(b)
illustrates the FAR execution strategy.

Pipelined Execution to Mask Computation Time.
We devise a pipelined execution strategy that uses sepa-
rate threads to handle Playing, Recording, Tone-Detection
Computation, and Measurement Exchange (Figure 2(b)). In
the recording thread, the Audio Recorder periodically fills
in a predefined audio buffer. For example, the minimum
required buffer size for Nexus One running Android 2.3.4 is
1024 Bytes, which corresponds to 512 sound samples. Once
the buffer is filled, the computation thread processes the
buffered sound samples, while the recording thread waits
for the next buffer. Once computation is finished, the mea-
surement exchange thread exchanges the detected tone ar-
rival times with the other phone using WiFi and outputs
the final distance measurement. The net effect is that tone-
detection computation is now fully overlapped with the ex-
change of sound waves (including recording delay, playing
delay and signal propagation delay). Given that in our sys-
tem, these two sets of operations take approximately equal
amount of time, the pipelined execution strategy effectively
doubles FAR’s measurement frequency.

 0

 2

 4

 6

 8

 10

 30 35 40 45

M
ea

su
re

m
en

t E
rr

or
 (

cm
)

Tone Length (ms)

Average Error
[-STD,+STD]

Figure 5: Impact of Different Tone Length. A tone
length of 46.4ms has good accuracy and low vari-
ance.

Note that when pipelining, it is of critical importance that
the tone-detection computation time is tightly bounded. If
the computation on one buffer is not finished before the
next buffer arrives, the computation overhead will accumu-
late over time, resulting in buffer overflows and lost sound
samples.

Streaming Execution to Mitigate Audio Playing Lag.
Instead of blocking on computation completion as the tra-
ditional strategy does, FAR implements a streaming mode
to continuously send and record tones. The Play() API of
the Audio Driver is called at a frequency similar to the tone
length, thus one tone will be sent right after another. This
helps in eliminating the Audio Playing Lag from the overall
measurement time. Similarly, we also implement the Au-
dio Recorder to work in a streaming fashion, continuously
recording sound samples for computation. As a result, if
there is no lag between tones, measurements can theoreti-
cally be conducted at a frequency equal to 1/L, provided
tone detection is fast enough to support such a rate.

5.3 Further Optimizations
In addition to the techniques discussed in the previous

sections, our system implements several additional optimiza-
tions to reduce delay.

Tone Length Minimization. Choosing the right Tone Length
is important. Choosing a small value can negatively affect
measurement accuracy, but choosing a large value not only
adds lag to the overall execution, but also increases the com-
plexity of the cross-correlation computation, thereby reduc-
ing the measurement frequency. We conducted extensive
experiments over different tone lengths and found that us-
ing a tone length of 512 sound samples (corresponding to
46.4ms at a 11.025kHz sampling rate) achieves good accu-
racy and stability (see Figure 5), while still allowing us to
keep the measurement frequency above 10Hz. The tone of
46.4ms is similar to that used in [16].

Buffering Delay Minimization. The buffer is pushed to the
application layer whenever it is full. The buffering delay is
therefore a random period in (0, B). To minimize this delay
in FAR, we use the phone’s minimum buffer size (which is
46.4ms (1024Bytes) on Nexus One).

Networking Operation. We use UDP over WiFi, adding a
delay of around 2-4ms per exchange.

Tone Overlapping. One attempted optimization that we
were unable to execute in practice. Instead of spacing the
two phone’s tones over time, we tried to overlap them in

time, but send them on different audio frequencies. Un-
fortunately, this approach failed because the local speaker’s
high power masks the remote phone’s signal, which gener-
ates detection errors.

6. SYSTEM ROBUSTNESS
Besides measurement frequency and accuracy, another im-

portant challenge we need to tackle is the robustness of the
system. A real-time motion game can not be fun if there are
frequent measurement errors. In this section, we tackle the
possible vulnerabilities to build a practical system.

6.1 Mobility Robustness
One unique challenge to distance estimation of motion

gaming is the Doppler effect caused by player movement.
Doppler effect happens when there is a relative movement
between the sound player and recorder. Intuitively, when
two phones are moving towards each other, the sound wave
arrives at the recorder earlier than expected, so it appears
compressed. However, since the recorder is recording the
sound at a constant rate, the recorded sound samples are
fewer than expected, which means in the recorded version of
the tone, the repeating pattern has a shorter length. Thus,
the offset used in the autocorrelation calculation needs to be
shortened. Similarly, when the phones are moving further
away, the tone is diluted, and thus a longer offset is needed.

We define the term Doppler offset Doffset as the num-
ber of samples between the two cross-correlation peaks i.e.
the locations of the repeating patterns. In a scenario with-
out Doppler effect, the Doppler offset should be equal to
the repeating pattern’s length, which is exactly half of the
tone length, Doffset = L/2, and the autocorrelation of X(t)
and X(t − L/2) should be calculated to detect the tone. If
Doppler shift occurs, the repeating pattern will be separated
by a Doffset not equal to L/2. In these cases, the autocorre-
lation of X(t) and its delayed stream X(t−Doffset), which
is R(Doffset, t), should be calculated to find the tone.

In Figure 6(a) we show an example of a dilution, in which
the tone does not show an autocorrelation peak. A careful
diagnosis uncovers that the offset is L/2 + 1 rather than the
expected L/2. This means that an extra sample has ap-
peared in the tone because of Doppler sound dilution. Thus
Doffset = L/2 + 1 is appropriate in this case.

Assume Phone 1 is sending the tone, Phone 1’s velocity
is vp1 (relative to earth), Phone 2’s velocity is vp2, Tone
Length is L (so the repeated pattern length is L/2), and
c is the speed of sound. The delay between the repeating
pattern of received sound sequence Doffset can be expressed
as

Doffset =
c + vp2
c + vp1

∗ L/2.

Figure 6(b) shows the relationship between Doffset and the
relative velocity of the two phones. We assume the maxi-
mum speed of a player’s hand is 2m/s, as we have observed
from our experiments that a higher speed is extremely hard
to reach. This is in accord with previous work [8] on hu-
man hand functions. Since this speed is not negligible com-
pared to the speed of sound (c = 343.2m/s), we can see
from the figure the possible range of the Doppler offset as
Doffset ∈ [L/2− 3, L/2 + 3].

Recovery from Doppler Effect with parallel auto-
correlators. To recover the correct autocorrelation peaks,

a simple method is to calculate the autocorrelation with the
appropriate offset. As an example, in Figure 6(c), we show
that we can recover the peak by calculating R(L/2 + 1, t),
rather than R(L/2, t). Given that Doffset ∈ [L/2−3, L/2+
3], we can set up a maximum of 7 parallel autocorrelators
to catch any practical case of Doppler shift.

Parallel autocorrelators have both advantages and disad-
vantages. The advantage is that more autocorrelators in-
crease the detection ratio. The disadvantage is that more
autocorrelators lead to longer computation time. Therefore,
one problem is to find the optimal number of autocorrela-
tors x̂ that maximizes the tones detected per unit time for
a given velocity v, i.e.,

x̂ = argmin
x

[Dv(x) max(b, T (x))] ,

where b is the communication bound, Dv(x) is the detection
ratio with x autocorrelators at velocity v, and T (x) is the
completion time for x parallel autocorrelators.

Unfortunately, each additional autocorrelator causes an
additive increase in computation time. In response, we ap-
ply a predictive Doppler estimate procedure. The idea is to
predict the likely Doppler shift based on the recent history
of distance measurements, and only execute the autocorre-
lators likely to match the predicted velocity shift.

Figure 7 shows a fast movement case with a maximum
player hand speed of 2m/s (and thus phone-to-phone rel-
ative speed reaches 4m/s). We show the two phones’ dis-
tance change over time, and mark the tones affected by the
Doppler effect. The Doppler-shifted tones are divided into
two groups: diluted cases, and compressed cases. As evident
from the figure, compressed cases occur when the distance
is decreasing, and diluted cases happen when distance is in-
creasing. Exceptions to this rule happen rarely.

Thus, we can use two groups of autocorrelators to deal
with the two groups of Doppler effect cases: one group of
autocorrelators R(L/2−1, t), R(L/2−2, t), R(L/2−3, t) for
compressed cases, and the other group of autocorrelators
R(L/2 + 1, t), R(L/2 + 2, t), R(L/2 + 3, t) for diluted cases.
For each buffer of recorded samples, we always run the orig-
inal autocorrelator R(L/2, t). At the same time we predict
the players’ relative velocity based on the recent distance
change history, then apply the appropriate group of auto-
correlators, as shown in Figure 8. We can reduce the to-
tal overhead by nearly half with this method. In fact, our
evaluation suggests that almost all of Doffset are within
[L/2 + 2, L/2 − 2], and thus only 3 parallel autocorrelators
are needed to recover from the vast majority of Doppler
shifts.

The prediction based method might not be correct when
the player is changing direction. However, the user’s speed
naturally slows when changing direction, which will decrease
the likelihood of experiencing Doppler shifts. As shown in
Figure 7, almost all of the tones at the peaks or troughs are
good cases.

6.2 Environmental Robustness
There are several environmental factors which can impair

distance measurements. We address these presently.

Robustness to Ambient Noise. To study the character
of ambient noise, we recorded sound from both indoor and
outdoor noisy scenarios. One finding is that the frequency
for these sound usually is below 2kHz. Thus, in our system

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60

A
m

pl
itu

de

Time (ms)

Cross Corr
Auto Corr

(a) Doppler Effect Example.

−2
−1

0
1

2

−2

0

2

L/2−3
L/2−2
L/2−1

L/2
L/2+1
L/2+2
L/2+3

Phone 1 Velocity(m/s)Phone 2 Velocity(m/s)

D
of

fs
et

(b) Phone Velocity vs. Doffset.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60

A
m

pl
itu

de

Time (ms)

Auto Corr, Doffset=L/2+1
Smoothed Auto Corr

Auto Corr Peak
Cross Corr

(c) Peak Recovery by Changing Offset.

Figure 6: Doppler Effect and Recovery. (a) The autocorrelation peak is destroyed by the Doppler effect. The
interval between the two cross-correlation peaks is L/2 + 1 rather than L/2. (b) Given player speed is limited,
Lrecv falls into a limited range. (c) Changing the offset of the autocorrelation to L/2+1 can detect the peak.

 0

 50

 100

 150

 200

 250

 0 2 4 6 8 10 12 14

D
is

ta
nc

e
(c

m
)

Time (s)

Phone Distance
Compressed Cases

Diluted Cases
Good Cases

Figure 7: Doppler effect causes sound dilution and
compression errors. However, we are able to predict
these errors based on recent velocity.

R(L/2+3, t)

R(L/2, t)

R(L/2-3, t)

Distance

Computation
Recorded

X(t)

Distance

History

.
.
.

.
.
.

Figure 8: Predictive Parallel Autocorrelators. The
distance history is leveraged to predict whether
sound will be diluted or compressed, and subse-
quently which group of autocorrelators to use.

we apply a high pass filter (a 9-th order Butterworth filter)
to filter out ambient noise. Figure 9 shows the spectrum
density map of a 1-minute recording of a crowded place,
before and after applying our filter respectively. It is clear
that the high pass filter functions well in eliminating ambient
noise.

Robustness to Multipath. Multipath effects can also im-
pact the robustness of tone detection if the players are in a
relatively small room or hallway. The reflected signal may
generate correlation peaks or degrade the main component.
Figure 10 shows a tone with an observable multipath ef-
fect. There is a lower autocorrelation peak at around 100ms
which is caused by the multipath components. We observe
that the multipath components usually have low power and
signal quality after reflection or scattering. Note that the
power threshold might not work well if there is high am-
bient sound. However, after applying the high pass filter,

 0

 0.04

 0.08

 0.12

 0.16

 0 1 2 3 4 5

P
ow

er
 S

pe
ct

ra
l D

en
si

ty

Frequency (kHz)

Before Filtering
After Filtering

Figure 9: The frequency map of a recording of am-
bient sound from a crowded area before and after
filtering.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

A
m

pl
itu

de

Time (ms)

Auto Corr
Cross Corr

Power

Figure 10: A multipath component generates a
smaller autocorrelation peak (at around 100ms) af-
ter the correct peak, but with a much lower power
level.

we can efficiently reduce the ambient sound power level. In
our implementation, we empirically set the power threshold
to 0.02 and peak level threshold to 0.4, which we show to
be sufficient to filter out the multipath components experi-
enced when playing in actual scenarios. In our evaluation
section, we conduct experiment in a small room to show the
performance.

Robustness to Occasional Tone Loss. FAR also provides
failsafe methods to deal with occasional tone losses. Since
the distance calculation requires the tone measurement from
both phones’ computation result, it is important to keep the
two measurements synchronized. In particular, if a tone is
not detected, the phone should be alerted of the situation.
We achieve this by a binary coding method: we assign a
unique pseudorandom sequence for each phone. If detection
is flawless, each phone will see alternating codes. Thus if a
phone receives any two consecutive tones whose codes are

the same, the phone detects a missed tone condition and
accounts for this in the distance calculation.

Coding beyond binary (e.g. ternary) is not necessary, be-
cause multiple consecutive missing tones are detected by
simple threshold on the arrival interval between two con-
secutive tones. When such cases arise, the system will enter
Failsafe mode. In Failsafe mode, one phone will send two
tones separated by a much larger interval, e.g. 250ms. Both
phone will then observe the large interval and reset their
state.

7. GAME DESIGN
In this section, we briefly describe two novel games we

have developed on FAR to date.

SwordFight. In SwordFight, the core gameplay works as
described in the introduction. In order to ensure that at-
tacks are oriented toward the opponent, the digital compass
is used. At the start of a fight round, the players are in-
structed to point their phones toward one another and the
phones’ digital compass orientations are recorded. During
the fight round, the digital compass is read to ensure that
movements are actually oriented toward the opponent.

ChaseCat. ChaseCat is a fast round-based game. In each
round, one player is randomly chosen as the Cat and the
other player is chosen as the cat chaser, the Dog. The Dog
player attempts to get her phone as close to the Cat player’s
phone as possible, while the Cat player tries to get her phone
as far from the Dog player’s phone as possible.2 A random
15-25 seconds after the round starts, players are instructed
to Freeze by an audio cue. If the Cat is within 30 centimeters
of the Dog during Freeze, then the Dog catches the Cat
and scores a point. Otherwise the Cat escapes and scores a
point. Movement during Freeze is detected by distance and
acceleration measurements.

Note that in the case of both games, distance measure-
ments are expected to be accurate up to several centime-
ters. Our evaluation results in the next section show that
FAR is accurate at this resolution. The maximum distance
that can be supported is a function of the maximum volume
of the phone speakers and the sensitivity of microphones.
The current platforms we use happen to have an effective
measurement range of 2 meters, so this is the current ef-
fective limit of gameplay. Out-of-range occurrences can be
detected by sequences of dropped tones and low SNR.

8. IMPLEMENTATION
We implement both our games on two phones: Nexus One

running Android 2.3.4 and Samsung Focus running Windows
Phone 7.5.

System Configuration. We use two maximum length
sequences (m-sequences) to generate unique tones for the
two phones. Since the m-sequence is well-known for its dis-
tinctive peak when applying cross-correlation, it helps us
to accurately identify the tone’s location in the recorded
sound. The sequence is comprised of 256 16-bit short inte-
gers. In the tone, the sequence is repeated once to support
the autocorrelation-based detection method (§5.1). The fre-
quency range of the tones are [0, 11.025kHz] (Nexus One)

2We recommend players plant their feet during the game,
but this has proven difficult to enforce.

 0

 0.2

 0.4

 0.6

 0.8

 1

 60 80 100

C
D

F

Audio Playing Lag (ms)

Figure 11: Audio Playing Lag Distribution

and [0, 16kHz] (Samsung Focus). The Audio Recorder sam-
ples the sound at a rate of 11.025kHz (Nexus One) and
16kHz (Samsung Focus), which is sufficient to support 1cm
measurement granularity. As discussed, to achieve a good
balance of robustness, accuracy, and speed, we choose a tone
length of 46.4ms. As mentioned in §5, the buffer size of the
Audio Recorder can incur a buffering delay. To minimize
this delay, we use the minimum allowed buffer size in both
phones: 1024 Bytes (46.4ms with 11.025kHz sampling rate)
for Nexus One, and 2000 Bytes (62.5ms with 16kHz sam-
pling rate) for Samsung Focus.

Randomness of Audio Playing Lag. As mentioned
in §5.2, the Streaming Execution Strategy mitigates Audio
Playing Lag. However, it turns out that the commodity
devices we have encountered exhibit an additional random
audio playing lag artifact. Figure 11 shows that the audio
playing lag is randomly distributed between 64ms (5%-tile)
and 99ms (95%-tile). Thus, to prevent two consecutive tones
from overlapping with each other, we add a 35ms guard pe-
riod when playing each tone. The interval between two con-
secutive Play() calls is then L + 35ms = 46.4ms + 35ms =
81.4ms. In fact, given our reductions in computation and
communication overhead which are no longer the bottle-
neck, it is this random system artifact that currently pre-
vents us from increasing the measurement frequency from
1/81.4ms ≈ 12Hz to a theoretical 1/L = 1/46.4ms =
21.6Hz.

9. EVALUATION
We demonstrate through our evaluation that FAR is fast,

accurate and robust, and that it is suitable for MMG games.
The primary metrics are as follows.

• Measurement Frequency. Is FAR efficient enough to sup-
port fast measurement? How fast can FAR make measure-
ments?

• Measurement Accuracy. How accurate are the measure-
ments?

• Measurement Robustness. How well does FAR handle noise
and motion?

• Gameplay. Do games based on FAR work in practice?

We conducted experiments with two Nexus Ones in a
room measuring 14m by 7m by 2.5m that typically serves as
a conference room. Static measurements are verified against
manual ruler measurements. For dynamic measurements,
the main comparable system used is the Xbox Kinect, a ded-
icated fixed-infrastructure motion tracking system for con-
sole gaming. Lastly, as real world validation, we invited

 0

 20

 40

 60

 80

 100

Cross
Correlation

Auto
Correlation

FAR

C
om

pu
ta

tio
n

T
im

e
(m

s)

46.4ms

[-STD,+STD]
Computation Deadline

Figure 12: Compute time needed to process a 512-
sample audio recording.

public users to play SwordFight and ChaseCat on four sep-
arate occasions. The highlights of the evaluation are as fol-
lows.

• FAR achieves a measurement frequency of at least 12 Hz.
In fact, FAR is fast enough to reach the limits imposed by
the phone’s audio driver.

• The median measurement error is 2cm. During times
of rapid movement, FAR compare favorably to Kinect for
both isolated player measurements and in-situ gameplay
player measurements.

• Doppler effects, high noise and multipath and are effec-
tively neutralized.

• Experiences of over fifty game players suggest that FAR is
a good match for motion gaming, and that SwordFight
and ChaseCat are fun to play.

9.1 Measurement Frequency
We show that FAR is efficient enough to take measurements

as fast as the phone audio driver can support. We evaluate
FAR’s feasibility in supporting the pipelined streaming exe-
cution strategy, and then report on the achieved frequency.

Feasibility. The fundamental limitation of previous ap-
proaches is that the detection of tones requires intensive
computation, and thus is not feasible within a pipelined
streaming execution strategy bound by tight deadlines. Fig-
ure 12 illustrates that FAR is able to comfortably satisfy the
strict deadline of 46.4ms corresponding to a recording of
512 samples. The traditional cross-correlation method is by
far the slowest at 70ms.3 Missing the computation deadline
incurs serious buffer overflow problems, leading to loss of
sound samples and thus measurements.

Measurement Frequency. Figure 13 shows the distribu-
tion of measurement updates for over 400 individual mea-
surements as generated by FAR. The effective measurement
frequency is 12Hz over 80% of the time. As noted in §8, a
random audio playing delay of [64ms,99ms] inhibits us from
achieving a theoretical frequency of 21.6Hz.

Measurement Lag. For each distance measurement, the
lag is comprised of the following components: Tone Length,
Propagation Delay, Buffering Delay, Computation Time and

3Note that this is much smaller than as claimed in [18] be-
cause we only process a 512-sample recording, while [18]
requires a much larger recording due to its traditional exe-
cution strategy.

 0

 0.2

 0.4

 0.6

 0.8

 1

 80 100 120 140

C
D

F

Measurement Update Interval (ms)

Figure 13: Measurement Update Distribution.
More than 80% of the time, a new update arrives
within 84ms of the previous update.

 0

 50

 100

 150

 200

 0 100 200 300 400

M
ea

su
re

m
en

t L
ag

 (
m

s)

Tone Index

Network
Computing

Buffering
Propagation
Tone Length

Figure 14: Measurement Lag Composition. Sev-
eral individual delays contribute to the time between
when a tone is played and when a distance measure-
ment is completed.

Measurement Exchange Delay. For motion gaming, the dis-
tance between two phone does not exceed 2 meters. There-
fore, the Propagation Delay is less than 6ms. Figure 14
shows the lag of 400 distance measurements when the phones
are placed 50cm apart. The measurements are sorted by
their total delay. With the exception of the last 5% of cases
with large network delays, the majority of measurements ex-
hibit a total lag of around 100ms. As expected, the delay
due to the length of the tone is constant, and the network
delay and propagation delay are very small. The buffering
delay is uniformly distributed in (5ms, 46ms).

9.2 Measurement Accuracy
Next we juxtapose the measurement accuracy of autocor-

relation (Auto Only) and FAR. We statically position the
two phones in three typical phone-to-phone orientations at
different distances. Figure 15 illustrates the measurement
accuracy of the two methods, each computed from over 400
experimental cases. It is clear that autocorrelation exhibits
measurement error that is severe, whereas FAR’s error is very
low with a median of 2cm and standard deviation of 1cm.
The figure also highlights that FAR is robust across varying
phone orientations and distances.

9.3 Impact of Player Movement
We next investigate whether our system is capable of ac-

curate measurements while players are moving. After ex-

 0

 5

 10

 15

 20

 10 30 50 70 90

M
ea

su
re

m
en

t E
rr

or
 (

cm
)

Distance (cm)

Auto Only
FAR

[-STD,+STD]

(a) Back To Back

 0

 5

 10

 15

 20

 10 30 50 70 90

M
ea

su
re

m
en

t E
rr

or
 (

cm
)

Distance (cm)

Auto Only
FAR

[-STD,+STD]

(b) Head To Back

 0

 10

 20

 30

 40

 50

 10 30 50 70 90

M
ea

su
re

m
en

t E
rr

or
 (

cm
)

Distance (cm)

Auto Only
FAR

[-STD,+STD]

(c) Head To Head

Figure 15: Measurement Accuracy in a Large Room

 0

 30

 60

 90

 120

 150

 0 10 20 30 40 50

D
is

ta
nc

e
(c

m
)

Time (s)

Kinect
FAR

(a) Experiment Case 1

 0

 30

 60

 90

 120

 150

 0 10 20 30 40 50

D
is

ta
nc

e
(c

m
)

Time (s)

Kinect
FAR

(b) Experiment Case 2

Figure 16: Isolated Player Measurements. Simultaneous distance measurements of FAR and Kinect when a
single player is moving her hands freely with a phone in each hand.

ploring several possibilities including a studio motion cap-
ture system, we settled upon Kinect, an off-the-shelf motion
capture system for the Xbox console gaming system, as the
candidate comparable system. The reason Kinect is appeal-
ing is because it is commercially available, practical to use,
and has already proven successful for infrastructure-based
console gaming.

Kinect measurements were obtained with the Kinect SDK
which is a Kinect-to-computer interface that allows pro-
grammatic collection of the human skeleton coordinates as
seen by the Kinect camera. We employed both isolated
player experiments and in-situ real player experiments.

Isolated Player Movement. In isolated player experi-
ments, we positioned the Kinect camera statically, and placed
a subject in front of the camera with a phone running FAR

in each hand. The subject was then asked to vary her hand
position at her discretion. FAR performed phone-to-phone
distance measurements while Kinect independently tracked
the hands.

Figure 16 illustrates the distance measurements simulta-
neously measured by Kinect and FAR for two representative
traces. For the most part, FAR matches the Kinect motion
path closely. In both traces, there are only 5 measurements
out of 700 that deviate significantly from the Kinect esti-
mate. In some instances, Kinect and FAR measurements can
be offset from one another by up to 12cm. The reason for
this is actually a reflection of the Kinect SDK, which can
exhibit 5-15cm variance of the reported hand coordinate be-
cause it is ambiguous as to whether it measures distance
from the base or tip of the hand. While an ideal ground
truth would not have such issues, the results are encour-

aging enough to suggest that FAR compares favorably to a
commercially successful motion gaming system.

In-Situ Gameplay Player Movement. In the in-situ
gameplay experiments, six players were invited from the UC
Santa Barbara Link Lab to conduct nine in-situ rounds of
measurement. Players were each given a phone and asked to
try out the SwordFight MMG game. During the game, FAR
provided the in-game distance measurements while Kinect
independently recorded their skeletal hand positions.

Figure 17 compares the corresponding FAR and Kinect
measurements for two representative traces. There are occa-
sionally slightly more mismatches between FAR and Kinect
during in-situ gameplay than during isolated player experi-
mentation. This is due to the fact that players – in the heat
of competition – tend to grip or orient the phones such that
mics or speakers may be temporarily blocked.

Interestingly, we have found that our system can in fact be
more accurate than Kinect because Kinect cannot accurately
track the hand when the player’s hand is obstructed from
the camera’s view (e.g. by her own body or the opponent’s
body). These situations happen frequently in SwordFight
and similar games. For example, two right-handed play-
ers facing off will often mean one player is poorly oriented
toward Kinect. In these situations, FAR measures distance
better because there are typically no obstructions between
the two phones in the players’ hands for games in which op-
ponents are facing each other. In the in-situ experiments
presented in Figure 17, we asked that the players compen-
sate for this Kinect limitation for the sake of experimenta-
tion: one player was instructed to play with the left hand,
the other player was instructed to play with the right hand,
and both players were instructed to not obstruct the line-of-

 0

 30

 60

 90

 120

 150

 0 10 20 30 40 50 60

D
is

ta
nc

e
(c

m
)

Time (s)

Kinect
FAR

(a) Experiment Case 1

 0

 30

 60

 90

 120

 150

 0 10 20 30 40 50 60

D
is

ta
nc

e
(c

m
)

Time (s)

Kinect
FAR

(b) Experiment Case 2

Figure 17: In-Situ Gameplay Measurements. Simultaneous distance measurements with FAR and Kinect of
players engaged in SwordFight.

sight between the Kinect and their phones. These patently
artificial constraints on gameplay highlight why FAR may
be potentially even more suitable than fixed infrastructure
measurement systems for certain styles of motion gaming,
regardless of infrastructure availability.

9.4 Measurement Robustness
We quantify FAR’s effectiveness at handling three sources

of measurement error: Doppler effect, multipath and noise.

Robustness to Doppler Effect. FAR detects Doppler
shifts with the use of parallel autocorrelators. Our experi-
mental setup consisted of recording FAR and Kinect measure-
ments simultaneously while instructing the players to swing
hands at varying rates, including as fast as possible. We
collected fifteen motion traces, each consisting of over 400
distance measurements. We calculated a phone-to-phone
relative velocity from the Kinect data (which is not affected
by Doppler shift). We group motion traces according to the
maximum velocity reported by Kinect.

Figure 18(a) and Figure 18(b) show the detection perfor-
mance of parallel autocorrelators (without prediction and
with prediction respectively) for representative traces with
motion speeds of 0.5m/s, 1m/s and 2m/s where the Doppler
shift does occur. As expected, even one autocorrelator per-
forms reasonably for 0.5m/s but more autocorrelators are
needed as the velocity increases. Most of the tones affected
by Doppler shift can be recovered by five parallel autocor-
relators as shown in Figure 18(a). This means the Doppler
offset is usually within [L/2− 2, L/2 + 2].

Figure 18(b) shows that after applying prediction, only
three parallel autocorrelators can recover most of the er-
rors, and achieve 85+% detection ratio even in a high speed
scenario of 2m/s. The detection ratio gain for more than
three autocorrelators is marginal. Figure 18(c) shows the
computation time required for increasing numbers of paral-
lel autocorrelators. Three correlators can be run simultane-
ously while maintaining or just barely exceeding the com-
putation deadline required for the fastest measurement fre-
quency. Our empirical observations indicate that sustained
velocities of 2m/s or even 1m/s are very hard for players
to maintain due to physical human limits; there is a natu-
ral opportunity to detect and complete measurements after
sudden bursts of fast movement. Therefore, FAR uses three
parallel autocorrelators which work well in practice.

 0

 2

 4

 6

 8

 10

 10 30 50 70 90

M
ea

su
re

m
en

t E
rr

or
 (

cm
)

Distance (cm)

Noisy (SNR=0), Average
Noisy (SNR=0), [-STD,+STD]

Quiet, Average
Quiet, [-STD,+STD]

Figure 20: Measurement accuracy when injecting
heavy noise (SNR=0). The accuracy drops a little
but can still achieve an accuracy of 5cm in average.

Robustness to Multipath and Ambient Noise. To test
robustness to reflected sounds, we ran FAR in the smallest
contained space we could find, a private room measuring 3m
by 2m. Figure 19 illustrates the performance in the small
room with various phone orientations and distances. While
the variance of measurement error is 5cm and larger than
in the original room, the measurement error is again very
small, with a median error of 2cm.

We injected an ambient sound to evaluate the anti-noise
property of FAR. In order to ensure repeatability, the ambi-
ent sound is a 1-minute recording from a very crowded area,
with people talking and laughing loudly. We define the SNR
of the signal as the energy of the sound recorded by the re-
mote phone over the energy of the ambient sound. While
we tested over different scenarios, we report only the per-
formance of the back to back position result with SNR=0
here in Figure 20 due to the similarity of the results. As
expected, the ambient sound degrades the accuracy, but the
impact is manageable. Recall that SNR=0 means a noise
energy level equal to the tones’, which is high.

9.5 Deployment Experiences
We have prepared SwordFight and ChaseCat for public

play on multiple occasions: at the SenSys 2011 conference
for any conference participant [24]; in Beijing for interns
working at the Microsoft Research Asia building late at
night; in Redmond for office colleagues taking a work break,

 0

 25

 50

 75

 100

1 3 5 7 9

D
et

ec
tio

n
R

at
io

 (
%

)

of Parallel Correlators

Max Speed=0.5m/s
Max Speed=1.0m/s
Max Speed=2.0m/s

(a) Detection Ratio w/o Prediction

 0

 25

 50

 75

 100

1 2 3 4 5

D
et

ec
tio

n
R

at
io

 (
%

)

of Parallel Correlators

Max Speed=0.5m/s
Max Speed=1.0m/s
Max Speed=2.0m/s

(b) Detection Ratio w/ Prediction

 0
 20
 40
 60
 80

 100
 120
 140

 1 2 3 4 5

C
om

pu
ta

tio
n

T
im

e
(m

s)

of Parallel Correlators

46.4ms

[-STD,+STD]
Computation Deadline

(c) Computation Time of Autocorrelators

Figure 18: Parallel Autocorrelators. (a) 90+% of the tones can be detected by five parallel autocorrelators,
which corresponds to offset range [L/2 − 2, L/2 + 2] (b) With predictive parallel autocorrelators, only three
autocorelators are needed. 85+% of the tones can be detected even at 2.0m/s hand movement speed. (c)
Three parallel autocorrelators can still meet the computation deadline.

 0

 2

 4

 6

 8

 10

 10 30 50 70 90

M
ea

su
re

m
en

t E
rr

or
 (

cm
)

Distance (cm)

[-STD,+STD]
Average

(a) Back To Back

 0

 2

 4

 6

 8

 10

 10 30 50 70 90

M
ea

su
re

m
en

t E
rr

or
 (

cm
)

Distance (cm)

[-STD,+STD]
Average

(b) Head To Back

 0

 2

 4

 6

 8

 10

 10 30 50 70 90

M
ea

su
re

m
en

t E
rr

or
 (

cm
)

Distance (cm)

[-STD,+STD]
Average

(c) Head To Head

Figure 19: Accuracy In A Small Room. The impact of the reflection is not noticeable.

and; at UC Santa Barbara for officemates, friends and fam-
ily. Qualitatively, the public reception has been positive.
Just as the Wii and Kinect ushered in a new class of console
gameplay, SwordFight and ChaseCat introduce an element
of physical action to mobile gaming that players seem to
enjoy.

10. RELATED WORK
Motion Gaming. Recently, non-mobile console gaming
systems have embraced player motion-based gameplay, de-
veloping a variety of schemes for player localization. The
Wii remote [15] uses an infrared camera to track the rela-
tive position of the TV-mounted sensor bar which emits two
infrared light sources. The PS3 Move controller [22] has a
light-emitting ball affixed which is tracked by a TV-mounted
video camera. The TV-mounted Kinect [14] projects an in-
frared mesh and tracks its time-of-flight back to the Kinect
camera. These console gaming systems demonstrate the
compelling nature of motion gaming, but are unfortunately
tethered to fixed console-based infrastructure.

The idea of phone-to-phone motion gaming was first men-
tioned in the recent work of Qiu et al. [18], described in
that paper’s introduction as high-speed, locational, phone-
to-phone (HLPP)-gaming. [18] was the first to propose
phone-to-phone localization as a primitive for mobile gam-
ing. The authors developed a 3D acoustic localization sys-
tem that utilizes each device’s two microphones, one speaker,
3-axis accelerometers and 3-axis magnetometers to calculate
coordinates of one phone in three dimensions relative to the
other. However, the scheme proposed in [18] is not actually
applicable to high-speed motion games such as SwordFight
since the reported update interval is over 800ms. Never-
theless, their 3D positioning algorithm may in the future

serve as a complement to the high-speed ranging techniques
presented in this work.

Acoustic Ranging. The authors of [16] developed an ear-
lier method for acoustic ranging between two phones but its
update rate can be arbitrarily slow since the two devices are
not synchronized, and the applications are unclear.

Much research exists on infrastructure-based localization
algorithms (see [11] for a survey). ActiveBat [5] and Cricket [17]
are two representative infrastructure-based systems. Each is
capable of achieving centimeter resolution, but dense ultra-
sonic infrastructure requirements are not compatible with ad
hoc mobile gaming. Infrastructure-based acoustic localiza-
tion includes [12, 21, 3]. These systems achieve resolution
in meters, which is insufficient for action gaming. Several
systems have reported achieving centimeter resolution [4, 7,
9] with custom-built hardwares which makes them less ap-
pealing in light of the pervasiveness of commodity mobile
phones.

Components of our algorithm’s signal processing techniques
have been used previously in the communication systems but
not in the context of localization. [20] proposed using au-
tocorrelation to reduce the complexity of frame and carrier
synchronization. [13] uses a technique similar to running
multiple parallel detectors for handling Doppler effects un-
derwater, but does not consider predicting Doppler shifts.

11. DISCUSSION AND CONCLUSION
In this paper, we report on the design and implementa-

tion of a new class of phone-to-phone games: Mobile Mo-
tion Games (MMG). The key underlying technology is a
new highly-accurate and real-time phone-to-phone distance
measurement substrate, which provides the API on top of
which games such as SwordFight and ChaseCat are built.

Our experience with having people play these games is posi-
tive. They are intuitive and fun to play. However, our work
here is a starting point. There remain open challenges that
could affect the game experience. One issue is that contin-
uous acoustic tones are noticeable, since mics and speakers
on commodity phones only support the audible frequency
range. A possible approach is to embed these tones in game
music. A second issue is that line-of-sight blockage between
the phones degrades the measurement accuracy, and players
can accidentally or purposefully block the mics and speak-
ers. Future work includes creation of a blockage warning or
cheat detection protocol. In addition, we are interested in
extending the API to permit simultaneous ranging between
more than two phones. Lastly, we are working on design-
ing and prototyping additional MMG games on top of our
phone-to-phone gaming API.

12. ACKNOWLEDGEMENTS
We extend our thanks to our shepherd Monica Lam and

the anonymous reviewers for their feedback and suggestions.
We would also like to thank Jian Qiu for consulting advice,
and members of the UC Santa Barbara Link Lab for volun-
teering their time to help us collect in-situ gameplay player
data.

13. REFERENCES
[1] Market trends: Gaming ecosystem, Gartner 2011.

[2] T. Beigbeder, R. Coughlan, C. Lusher, J. Plunkett,
E. Agu, and M. Claypool. The effects of loss and
latency on user performance in unreal tournament
2003. In Proceedings of the 3rd ACM SIGCOMM
Workshop on Network and System Support for Games
(NetGames), pages 144–151, 2004.

[3] X. Bian, G. Abowd, and J. Rehg. Using sound source
localization in a home environment. Pervasive
Computing, pages 281–291, 2005.

[4] L. Girod, M. Lukac, V. Trifa, and D. Estrin. The
design and implementation of a self-calibrating
distributed acoustic sensing platform. In Proceedings
of the 4th International Conference on Embedded
Networked Sensor Systems (SenSys), pages 71–84,
2006.

[5] A. Harter, A. Hopper, P. Steggles, A. Ward, and
P. Webster. The anatomy of a context-aware
application. Wireless Networks, 8(2):187–197, 2002.

[6] M. Hazas and A. Hopper. Broadband ultrasonic
location systems for improved indoor positioning.
IEEE Transactions on Mobile Computing,
5(5):536–547, 2006.

[7] M. Hazas, C. Kray, H. Gellersen, H. Agbota,
G. Kortuem, and A. Krohn. A relative positioning
system for co-located mobile devices. In Proceedings of
the 3rd International Conference on Mobile Systems,
Applications, and Services (MobiSys), pages 177–190,
2005.

[8] L. Jones and S. Lederman. Human hand function.
Oxford University Press, USA, 2006.

[9] G. Kortuem, C. Kray, and H. Gellersen. Sensing and
visualizing spatial relations of mobile devices. In
Proceedings of the 18th Annual ACM Symposium on
User interface Software and Technology (UIST), pages
93–102, 2005.

[10] M. Kushwaha, K. Molnár, J. Sallai, P. Volgyesi,
M. Maróti, and A. Lédeczi. Sensor node localization
using mobile acoustic beacons. In Proceedings of the
IEEE International Conference on Mobile Adhoc and
Sensor Systems (MASS), pages 491–500, 2005.

[11] A. LaMarca and E. de Lara. Location systems: An
introduction to the technology behind location.
Synthesis Lectures on Mobile and Pervasive
Computing, 3(1):1–122, 2008.

[12] C. Lopes, A. Haghighat, A. Mandal, T. Givargis, and
P. Baldi. Localization of off-the-shelf mobile devices
using audible sound: architectures, protocols and
performance assessment. ACM SIGMOBILE Mobile
Computing and Communications Review, 10(2):38–50,
2006.

[13] S. Mason, C. Berger, S. Zhou, and P. Willett.
Detection, synchronization, and doppler scale
estimation with multicarrier waveforms in underwater
acoustic communication. IEEE Journal on Selected
Areas in Communications, 26(9):1638–1649, 2008.

[14] Microsoft. Xbox Kinect.
http://www.xbox.com/kinect.

[15] Nintendo. Nintendo Wii.
http://www.nintendo.com/wii.

[16] C. Peng, G. Shen, Y. Zhang, Y. Li, and K. Tan.
Beepbeep: a high accuracy acoustic ranging system
using cots mobile devices. In Proceedings of the 5th
International Conference on Embedded Networked
Sensor Systems (SenSys), pages 1–14, 2007.

[17] N. B. Priyantha, A. Chakraborty, and
H. Balakrishnan. The Cricket Location-Support
System. In Proceedings of the 6th Annual
International Conference on Mobile Computing and
Networking (MobiCom), pages 32–43, 2000.

[18] J. Qiu, D. Chu, X. Meng, and T. Moscibroda. On the
feasibility of real-time phone-to-phone 3d localization.
In Proceedings of the 9th ACM Conference on
Embedded Networked Sensor Systems (SenSys), pages
190–203, 2011.

[19] J. Sallai, G. Balogh, M. Maroti, A. Ledeczi, and
B. Kusy. Acoustic ranging in resource constrained
sensor networks. In Proceedings of the International
Conference on Wireless Networks (ICWN), pages
467–474, 2004.

[20] T. Schmidl and D. Cox. Robust frequency and timing
synchronization for ofdm. IEEE Transactions on
Communications, 45(12):1613–1621, 1997.

[21] J. Scott and B. Dragovic. Audio location: Accurate
low-cost location sensing. Pervasive Computing, pages
307–311, 2005.

[22] Sony. Playstation Move.
http://us.playstation.com/ps3/playstation-move.

[23] K. Whitehouse and D. Culler. Calibration as
parameter estimation in sensor networks. In
Proceedings of the 1st ACM International Workshop
on Wireless Sensor Networks and Applications
(WSNA), pages 59–67, 2002.

[24] Z. Zhang, D. Chu, J. Qiu, and T. Moscibroda. Demo:
Sword fight with smartphones. In Proceedings of the
9th ACM Conference on Embedded Networked Sensor
Systems (SenSys), pages 403–404, 2011.

http://www.xbox.com/kinect
http://www.nintendo.com/wii
http://us.playstation.com/ps3/playstation-move

	Introduction
	Assumptions & Requirements
	Background
	Acoustic Distance Measurement
	Limitations

	FAR System Design
	Fast Distance Measurements
	Fast Tone Detection Algorithm
	Pipelined Streaming Execution Strategy
	Further Optimizations

	System Robustness
	Mobility Robustness
	Environmental Robustness

	Game Design
	Implementation
	Evaluation
	Measurement Frequency
	Measurement Accuracy
	Impact of Player Movement
	Measurement Robustness
	Deployment Experiences

	Related Work
	Discussion and Conclusion
	Acknowledgements
	References

