
A Secure and Formally Verified Linux KVM Hypervisor
Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh, John Zhuang Hui
{shihwei,xupeng.li,rgu,nieh,j-hui}@cs.columbia.edu

Department of Computer Science
Columbia University

Abstract—Commodity hypervisors are widely deployed to support
virtual machines (VMs) on multiprocessor hardware. Their growing
complexity poses a security risk. To enable formal verification over
such a large codebase, we introduce microverification, a new approach
that decomposes a commodity hypervisor into a small core and a
set of untrusted services so that we can prove security properties of
the entire hypervisor by verifying the core alone. To verify the multi-
processor hypervisor core, we introduce security-preserving layers to
modularize the proof without hiding information leakage so we can
prove each layer of the implementation refines its specification, and
the top layer specification is refined by all layers of the core implemen-
tation. To verify commodity hypervisor features that require dynam-
ically changing information flow, we introduce data oracles to mask
intentional information flow. We can then prove noninterference at the
top layer specification and guarantee the resulting security properties
hold for the entire hypervisor implementation. Using microverifica-
tion, we retrofitted the Linux KVM hypervisor with only modest mod-
ifications to its codebase. Using Coq, we proved that the hypervisor
protects the confidentiality and integrity of VM data, while retaining
KVM’s functionality and performance. Our work is the first machine-
checked security proof for a commodity multiprocessor hypervisor.

I. INTRODUCTION

Cloud computing has enabled increasing numbers of companies
and users to move their data and computation off-site into virtual
machines (VMs) running on hosts in the cloud. Cloud computing
providers deploy commodity hypervisors [1], [2] to support these
VMs on multiprocessor hardware. The security of a VM’s data
hinges on the correctness and trustworthiness of the hypervisor.
However, modern hypervisors are huge, complex, and imperfect
pieces of software, often integrated with an entire operating
system (OS) kernel. Attackers that successfully exploit hypervisor
vulnerabilities may gain unfettered access to VM data in CPU
registers, memory, I/O data, and boot images, and compromise the
confidentiality and integrity of VMs—an undesirable outcome for
both cloud providers and users [3].

Theoretically, formal verification offers a solution to this
problem, by proving that the hypervisor protects VM data under
all circumstances. However, this approach is largely intractable for
commodity hypervisors—existing systems verification research has
yet to demonstrate how one might feasibly reason about the security
properties of full-featured, multiprocessor hypervisors. Most
verified systems are specifically designed to be verified, meaning
they lack basic features and are far simpler than their commodity
counterparts. This suggests that the proof effort potentially required
to fully verify a commodity system is far beyond feasible. It
took seL4 [4] ten person-years to verify 9K lines of code (LOC),
and CertiKOS [5] three person-years to verify 6.5K LOC. For
comparison, KVM [1], a full-featured, multiprocessor hypervisor

integrated with Linux, is more than 2M LOC. It remains unknown
how security properties of such a vast system, not written with
verification in mind, may be verified in its entirety.

To address this problem, we introduce microverification, a new
approach for verifying commodity systems, based on the hypothesis
that small changes to these systems can make key properties
much easier to verify while preserving their overall functionality
and performance. Microverification reduces the proof effort for
a commodity system by retrofitting the system into a small core
and a set of untrusted services, so that it is possible to reason about
properties of the entire system by verifying the core alone. Based
on microverification, we introduce MicroV, a new framework for
verifying the security properties of large, multiprocessor commodity
systems. MicroV further reduces proof effort by providing a
set of proof libraries and helper functions to modularize proofs
using a layered verification approach, abstracting detailed C and
assembly implementations into higher-level specifications using
the Coq proof assistant [6]. Using MicroV, we verify a retrofitted
commodity system by first proving the functional correctness of its
core, showing that its implementation refines its Coq specification,
then use the specification to prove security properties of the entire
system. Because the specification is easier to use for higher-level
reasoning, it becomes possible to prove security properties that
would be intractable if attempted directly on the implementation.

As shown in Figure 1, we use MicroV to prove, for the first
time, the security properties of the Linux KVM hypervisor.
First, we retrofit KVM into a small, verifiable core, KCore,
and a rich set of untrusted hypervisor services, KServ. KCore
mediates all interactions with VMs and enforces access controls
to limit KServ access to VM data, while KServ provides complex
virtualization features. Building on our previous work [7], we retrofit
KVM/ARM [8], [9], the Arm implementation of KVM, given
Arm’s increasing popularity in server systems [10], [11], [12]. Arm
provides Virtualization Extensions (Arm VE) [13] to support virtual
machines. We leverage Arm VE to protect and run KCore at a
higher privilege level than KServ, which encapsulates the rest of the
KVM implementation, including the host Linux kernel. Retrofitting
required only modest modifications to the original KVM code. Upon
retrofitting, KCore ends up consisting of 3.8K LOC (3.4K LOC in C
and 400 LOC in assembly), linked with a verified crypto library [14].

Second, we prove that the KCore implementation refines its
layered specification. A key challenge we address is ensuring that
the refinement between implementation and specification preserves
security properties, such as data confidentiality and integrity. For
example, this may not hold in a multiprocessor setting [15], [16]
because intermediate updates to shared data within critical sections
can be hidden by refinement, yet visible across concurrent CPUs. To

1782

2021 IEEE Symposium on Security and Privacy

© 2021, Shih-Wei Li. Under license to IEEE.
DOI 10.1109/SP40001.2021.00049

Fig. 1: Microverification of the Linux KVM hypervisor.

reason about KCore in a multiprocessor setting, MicroV introduces
security-preserving layers to express KCore’s specification as a
stack of layers, so that each module of its implementation may be
incrementally proven to refine its layered specification and preserve
security properties. Security-preserving layers employ transparent
trace refinement, a new technique to track updates to shared data
and ensure that a critical section with multiple such updates that
may be visible across CPUs is not refined into a single atomic
primitive. This ensures that refinement does not hide information
release. We use transparent trace refinement to verify, for the first
time, the functional correctness of a multiprocessor system with
shared page tables. Using security-preserving layers, we can ensure
that the composition of layers embodied by the top-level KCore
specification reflects all intermediate updates to shared data across
the entire KCore implementation. We can then use the top-level
specification to prove the system’s information-flow security
properties and ensure those properties hold for the implementation.

Finally, we use KCore’s specification to prove that any malicious
behavior of the untrusted KServ using KCore’s interface cannot vio-
late the desired security properties. We prove VM confidentiality and
integrity using KCore’s specification, formulating our guarantees in
terms of noninterference [17] to show that there is no information
leakage between VMs and KServ. However, a strict noninterference
guarantee is incompatible with commodity hypervisor features,
including KVM’s. For example, a VM may send encrypted data
via shared I/O devices virtualized via untrusted hypervisor services,
thereby not actually leaking private VM data. This kind of intentional
information release, known as declassification [18], does not break
confidentiality and should be distinguished from unintentional
information release. MicroV introduces data oracles, logical integer
generators, which stand in as proxies for intentionally released data.
The value returned by a data oracle is guaranteed to only depend
on the state of the principal, a VM or KServ, reading the value. For
example, the value of encrypted data that a VM sends to KServ is
specified as the next integer returned by the data oracle. The integer
masks the information flow of the encrypted data because it does
not depend on the behavior of other VMs. After this masking, any
outstanding information flow is unintentional and must be prevented,
or it will affect the behavior of KServ or VMs. To show the
absence of unintentional information flow, we prove noninterference
assertions hold for any behavior by the untrusted KServ and VMs,
interacting with KCore’s top layer specification. The noninterference
assertions are proven over this specification, for any implementation
of KServ, but since KCore’s implementation refines its specification
via security-preserving layers, unintentional information flow is
guaranteed to be absent for the entire KVM implementation.

While verifying KCore, we found various bugs in our

initial retrofitting. Most bugs were discovered as part of our
noninterference proofs, demonstrating a limitation of verification
approaches that only prove functional correctness via refinement
alone: the high-level specifications may themselves be insecure. In
other words, these bugs were not detected by just verifying that the
implementation satisfies its specification, but by ensuring that the
specification guarantees the desired security properties of the system.

All the security-preserving layer specifications, transparent trace
refinement proofs, and noninterference proofs were implemented
using Coq [6]. Verification took two person-years to complete. Our
verified KVM, SeKVM, incurs only modest performance overhead
compared to unmodified KVM on real application workloads, and
supports KVM’s wide range of commodity hypervisor features,
including running multiple multiprocessor VMs with unmodified
commodity OSes, shared multi-level page tables with huge page
support, standardized virtio I/O virtualization with vhost kernel op-
timizations, emulated, paravirtualized, and passthrough I/O devices
with IOMMU protection against direct memory access (DMA)
attacks, and compatibility with Linux device drivers for broad Arm
hardware support. This is the first-ever multiprocessor hypervisor,
and first-ever retrofitting of a widely-deployed commodity hyper-
visor, to provably guarantee VM data confidentiality and integrity.

II. THREAT MODEL AND ASSUMPTIONS

Our threat model is primarily concerned with hypervisor vulner-
abilities that may be exploited to compromise private VM data. For
each VM we are trying to protect, an attacker may control other
VMs, control KServ, and attempt to exploit KCore vulnerabilities.
We assume VMs do not voluntarily reveal their own private data,
whether on purpose or by accident. We do not provide security fea-
tures to prevent or detect VM vulnerabilities, so a compromised VM
that involuntarily reveals its own data is out of the scope of our threat
model. However, we do protect each VM from attacks by other com-
promised VMs. Attackers may control peripherals to perform ma-
licious memory accesses via DMA [19]. Side-channel attacks [20],
[21], [22], [23], [24], [25] are beyond the scope of the paper.

We assume a secure persistent storage to store keys. We assume
the system is initially benign, allowing signatures and keys to be
securely stored before the system is compromised. We trust the
machine model, compiler, and Coq.

III. OVERVIEW OF MICROV

Hypervisors must protect their VMs’ data confidentiality—
adversaries should not be privy to private VM data—and
integrity—adversaries should not be able to tamper with private VM
data. For some particular VM, potential adversaries are other VMs
hosted on the same physical machine, as well as the hypervisor

1783

itself—specifically, SeKVM’s untrusted KServ. Each of these
principals run on one or more CPUs, with their execution and
communication mediated by KCore. Our goal here is to verify
that, irrespective of how any principal behaves, KCore protects the
security of each VMs’ data.

To do so, we formulate confidentiality and integrity as
noninterference assertions [17]—invariants on how principals’
behavior may influence one another. Intuitively, if the confidentiality
of one VM’s private data is compromised, then its adversaries’
behavior should vary depending on that data. Thus, if the behavior
of all other VMs and KServ remains the same, in spite of any
changes made to private data, then that data is confidential. Integrity
is the dual of confidentiality [26], [27]: if the behavior of a VM,
acting upon its own private data, is not affected by variations in
other VMs’ or KServ’s behavior, then its data is intact.

Using KCore’s C and assembly code implementation to prove
noninterference assertions is impractical, as we would be inundated
by implementation details and concurrent interleavings. Instead, we
use MicroV to show that the implementation of the multiprocessor
KCore incrementally refines a high-level Coq specification. We
then prove any implementation of KServ or VMs interacting with
the top-level specification satisfies the desired noninterference
assertions, ensuring that the entire SeKVM system is secure
regardless of the behavior of any principal. To guarantee that
proven top-level security properties reflect the behavior of the
implementation of KCore, we must ensure that each level of
refinement fully preserves higher-level security guarantees.

A. Security-preserving Refinement

To enable incremental and modular verification, MicroV
introduces security-preserving layers:
Definition 1 (Security-preserving layer). A layer is security-
preserving if and only if its specification captures all information
released by the layer implementation.
Security-preserving layers build on Certified Concurrent Abstraction
Layers (CCAL) [28] to verify the correctness of multiprocessor
code. Security-preserving layers retain the compositionality of
CCALs, but unlike CCALs and other previous work, ensure
refinement preserves security guarantees in a multiprocessor setting.

For each moduleM of KCore’s implementation, we construct a
security-preserving layerM@LvS, which states thatM , running
on top of the lower layer L, refines its interface specification
S. Because the layer refinement relation v is transitive, we can
incrementally refine KCore’s entire implementation as a stack of
security preserving layers. For example, given a system comprising
of modulesM3,M2, andM1, their respective layer specifications
L3, L2, and L1, and a base machine model specified by L0, we
prove M1@L0 v L1, M2@L1 v L2, and M3@L2 v L3. In
other words, once a module of the implementation is proven to
refine its layer specification, we can use that simpler specification,
instead of the complex module implementation, to prove other
modules that depend on it. We compose these layers to obtain
(M3⊕M2⊕M1)@L0vL3, proving that the behavior of the sys-
tem’s linked modules together refine the top-level specification L3.

All interface specifications and refinement proofs are manually
written in Coq. We use CompCert [29] to parse each module
of the C implementation into an abstract syntax tree defined in

Coq; the same is done manually for assembly code. We then
use that Coq representation to prove that each module refines
its respective interface specification at the C and assembly level.
The overall KCore implementation thereby refines a stack of
security-preserving layers, such that the top layer specifies the
entire system by its functional behavior over its machine state.

MicroV’s security-preserving layer library provides facilities
to soundly abstract away complications arising from potential
concurrent interference, so that we may leverage sequential
reasoning to simplify layer refinement proofs. The key challenge is
handling objects shared across multiple CPUs, as we must account
for how concurrent operations interact with them while reasoning
about the local execution of any given CPU.

Example 1 (Simple page table). We illustrate this problem
using a page table example. On modern computers with hardware
virtualization support, the hypervisor maintains a nested page table
(NPT) [30] for each VM, to manage the VM’s access to physical
memory. NPTs translate guest physical memory addresses (gPAs) to
host physical memory addresses (hPAs), mapping each guest frame
number (gfn) to a physical frame number (pfn).

In our example, the NPT of a VM is allocated from its own
page table pool. The pool consists of page table entries, whose
implementation is encapsulated by a lower layer interface that
exposes functions pt_load(vmid, ofs) to read the value at offset
ofs from the page table pool of VM vmid and pt_store(vmid,

ofs, val) to write the value val at offset ofs. To keep the
example simple, we use a simplified version of the real NPT
verified in MicroV, ignore dynamic allocation and permission bits,
and assume two-level paging denoted with pgd and pte. Consider
the following two implementations, which map gfn to pfn in
VM vmid’s NPT:
void set_npt(uint vmid, uint gfn, uint pfn) {
acq_lock_npt(vmid);
// load the pte base address
uint pte = pt_load(vmid, pgd_offset(gfn));
pt_store(vmid, pte_offset(pte,gfn), pfn);
rel_lock_npt(vmid);

}
void set_npt_insecure(uint vmid, uint gfn, uint pfn) {
acq_lock_npt(vmid);
uint pte = pt_load(vmid, pgd_offset(gfn));
pt_store(vmid, pte_offset(pte,gfn), pfn+1); // BUG
pt_store(vmid, pte_offset(pte,gfn), pfn);
rel_lock_npt(vmid);

}

Since an NPT just maintains a mapping from gfns to pfns, we
can specify the NPT as a logical map gfn 7→pfn, then prove that
a correct NPT implementation refines its specification. However,
among the two implementations, only set_npt is correct, while
set_npt_insecure is not. A sound refinement proof should
only admit set_npt, while rejecting set_npt_insecure for its
extraneous intermediate mapping from gfn to pfn+1.

Figure 2 illustrates the vulnerability of set_npt_insecure. The
problem arises because a multiprocessor VM supports shared
memory among its virtual CPUs (VCPUs). This requires its NPT to
also be shared among its VCPUs, potentially running on different
physical CPUs. Even though the NPT is protected by software
spinlocks, the hardware memory management unit (MMU) will
still perform page translations during set_npt_insecure’s critical
section. When the hypervisor runs set_npt_insecure to map a
physical page used by VMm to VM n’s NPT, VMm’s secrets can
be leaked to VM n accessing the page on another physical CPU.

1784

Fig. 2: Insecure page table updates. VM n runs on CPUs 0 and 1, while
VM m runs on CPU 2. Physical page pfn is free, but pfn+1 is mapped
to VMm’s NPT and contains its private data, so only VMm should have
access to it. At time t0, KCore handles VM n’s page fault and invokes
set_npt_insecure(n, gfn, pfn) on CPU 0 to map guest page gfn
in VM n’s NPT. At time t2, gfn is transiently but erroneously mapped to
pfn+1 until t4, allowing VM n on CPU 1 to concurrently access VMm’s
private data using this temporary mapping.

Previous refinement techniques [5], [28], [31] would incorrectly
deem set_npt and set_npt_insecure functionally equivalent,
failing to detect this vulnerability. For example, although CertiKOS
proves that its own software is data-race free (DRF), it does not sup-
port, nor model, the MMU hardware feature allowing an untrusted
principal to concurrently access a shared page table, so the above two
implementations would erroneously satisfy the same specification.

To address this problem, MicroV introduces transparent
trace refinement, which forbids hidden information flow in a
multiprocessor setting. To explain this technique, we first describe
our multiprocessor machine model, and how shared objects are
modeled using event traces. We then describe how transparent
trace refinement can be used to enable sequential reasoning for
a write data-race-free system, where shared objects are protected
by write-locks, but reads on shared objects (which may lead to
information leakage) may occur at any time.

1) Multiprocessor model: We define an abstract multiprocessor
machine model, whose machine state σ consists of per-physical
CPU private state (e.g., CPU registers) and a global logical log,
a serial list of events generated by all CPUs throughout their
execution. σ does not explicitly model shared objects. Instead,
events incrementally convey interactions with shared objects, whose
state may be calculated by replaying the logical log. An event is
emitted by a CPU and appended to the log whenever that CPU
invokes a primitive that interacts with a shared object. For example,
the page table pool used by our NPT implementation is accessible
from KCore running on each CPU via the pt_store(vmid, ofs,

val) primitive, which generates the event (P_ST vmid ofs val).
Similarly, the NPT itself is a shared object, so the set_npt(vmid,

gfn, pfn) primitive defined in our layer specification generates
the event (SET_NPT vmid gfn pfn).

Our abstract machine is formalized as a transition system,
where each step models some atomic computation taking place
on a single CPU; concurrency is realized by the nondeterministic
interleaving of steps across all CPUs [32]. To simplify reasoning
about all possible interleavings, we lift multiprocessor execution

Fig. 3: Querying the event oracle to refine set_npt. The bottom trace
shows events produced by set_npt’s implementation as it interacts
with the shared lock and page table pool it uses. The query move before
ACQ_LK yields all events from other CPUs prior to ACQ_LK; the query
move before P_LD yields all events from other CPUs since the last query
up until P_LD. The middle trace shows how we would like to shuffle
events in the bottom trace to match those in the top trace.

to a CPU-local model, which distinguishes execution taking place
on a particular CPU from its concurrent environment [5].

All effects coming from the environment are encapsulated by
and conveyed through an event oracle, which yields events emitted
by other CPUs when queried. How the event oracle synchronizes
these events is left abstract, its behavior constrained only by
rely-guarantee conditions [33]. Since the interleaving of events is
left abstract, our proofs do not rely on any particular interleaving of
events and therefore hold for all possible concurrent interleavings.
A CPU captures the effects of its concurrent environment by
querying the event oracle, a query move, before its own CPU step,
a CPU-local move. A CPU only needs to query the event oracle
before interacting with shared objects, since its private state is not
affected by these events. Figure 3 illustrates query and CPU-local
moves in the context of the event trace produced by set_npt’s
implementation to refine its specification. The end result of its
execution is a composite event trace of the events from other CPUs,
interleaved with the events from the local CPU.

Interleaving query and CPU-local moves still complicates
reasoning about set_npt’s implementation. However, if we can
guarantee that events from other CPUs do not interfere with the
shared objects used by set_npt, we can safely shuffle events
from other CPUs to the beginning or end of its critical section. For
example, if we could prove that set_npt’s implementation is DRF,
then other CPUs will not produce events within set_npt’s critical
section that interact with the locked NPT. We would then only need
to make a query move before the critical section, not within the
critical section, allowing us to sequentially reason about set_npt’s
critical section as an atomic operation.

Unfortunately, as shown by set_npt_insecure, even if
set_npt correctly uses locks to prevent concurrent NPT accesses
within KCore’s own code, it is not DRF because KServ or VMs
executing on other CPUs may indirectly read the contents of their
NPTs through the MMU hardware. This prevents us from soundly
shuffling event queries outside of the critical section and employing
sequential reasoning to refine the critical section to an atomic step.
If set_npt cannot be treated as an atomic primitive, sequential
reasoning would then be problematic to use for any layer that uses
set_npt, making their refinement difficult. Without sequential
reasoning, verifying a large system like KCore is infeasible.

2) Transparent trace refinement: We observe that information
leakage can be modeled by read events that occur arbitrarily

1785

Fig. 4: Transparent trace refinement of insecure and secure set_npt
implementations. Each node represents an event observation. Nodes of
the same color constitute an event observer group. The insecure example
does not satisfy the transparency condition because there is an intermediate
observation (shown in red) that cannot map to any group in the specification.

throughout critical sections, without regard for locks. To ensure
that refinement does not hide this information leakage, transparent
trace refinement treats read and write events separately. We view
shared objects as write data-race-free (WDRF) objects—shared
objects with unavoidable concurrent observers. For these objects,
we treat their locks as write-locks, meaning that query moves that
yield write events may be safely shuffled to the beginning of the
critical section. Query moves in the critical section may then only
yield read events from those concurrent readers.

To determine when read events may also be safely shuffled,
each WDRF object must define an event observer function, which
designates what concurrent CPUs may observe: they take the
current machine state as input, and produce some observed result,
with consecutive identical event observations constituting an event
observer group. Event observer groups thus represent all possible
intermediate observations by concurrent readers. Since the event
observations are the same in an event observer group, read events
from other CPUs will read the same values anywhere in the group
and can be safely shuffled to the beginning, or end, of an event
observer group, reducing the verification effort of dealing with
interleavings. Our security-preserving layers enforce that any
refinement of WDRF objects must satisfy the following condition:

Definition 2 (Transparency condition). The list of event observer
groups of an implementation must be a sublist of that generated
by its specification. That is, the implementation reveals at most as
much information as its specification.

This condition ensures that the possibility of concurrent readers
and information release is preserved through each layer refinement
proof. In particular, if a critical section has at most two distinct
event observer groups, read events can be safely shuffled to the
beginning or end of the critical section. Query moves are no longer
needed during the critical section, but can be made before or
after the critical section for both read and write events, making it
possible to employ sequential reasoning to refine the critical section.
Transparent trace refinement can thereby guarantee that events from
other CPUs do not interfere with shared objects in critical sections.
Figure 4 illustrates how this technique fares against our earlier
counterexample, as well as to our original, secure implementation.
set_npt_insecure has three event observer groups that can
observe three different values, before the first pt_store, between
the first and second pt_store, and after the second pt_store.
Read events after the first pt_store cannot be shuffled before the

critical section. On the other hand, set_npt has only two event
observer groups, one that observes the value before pt_store, and
one that observes the value after pt_store, so query moves are not
needed during the critical section. The implementation can therefore
be refined to an atomic set_npt specification. Refinement proofs
for higher layers that use set_npt can then treat set_npt as
an atomic primitive, simplifying those proofs since set_npt can
be viewed as just one atomic computation step instead of many
CPU-local moves with intervening query moves.

B. Noninterference Assertions

Since transparent trace refinement ensures that KCore’s top-level
specification hides only its implementation details, but not
any potential information flow, we can now soundly prove its
security properties using its specification. We express the security
properties as noninterference assertions, and want to show that
one principal cannot affect the private data of another, ensuring
VM confidentiality and integrity. For each principal, we define a
private data lens (PDL), denoted by V, which returns the subset
of machine state σ that is private to the principal. For example, the
private data of VM p, denoted as V(σ, p)⊆σ, includes the contents
of its CPU registers and memory. A principal should not be able to
infer the state in any other principal’s PDL, and its own PDL should
be unaffected by other principals. Such an isolation property can be
proven using noninterference by showing state indistinguishability:
Definition 3 (State indistinguishability). Two states σ1 and σ2
are indistinguishable from the perspective of principal p if and only
if V(σ1, p)=V(σ2, p).
In other words, a pair of distinct machine states are indistinguishable
to some principal p if the differences fall beyond the scope of
p’s PDL. We want to prove that, starting from any two states
indistinguishable to a principal p, the abstract machine should only
transition to a pair of states that are still indistinguishable to p. Such
transitions are said to preserve state indistinguishability.

Example 2 (Proving VM confidentiality). Consider KServ and a
VMm, where VMm has only gfn 1 in its address space, mapped
to pfn 2. We prove VM m’s data confidentiality by showing that
any change in VMm’s private data is not visible to KServ during
execution. Suppose VM m writes content b to its gfn 1 in one
execution (leading to state σ), and writes content b′ in an alternate
execution (leading to state σ′); we must show that these executions
are indistinguishable to KServ’s PDL:

To keep our example simple, we use a simplified V consisting
of only the contents stored in a principal’s guest page frames.
For instance, in σ, after VM m writes b to gfn 1, V(σ, m) is
the partial map {1 7→ b}. Yet in both executions, whether VM m
writes b or b′, KServ’s PDL to the two states are identical:
V(σ, KServ)=V(σ′, KServ)={1 7→a, 2 7→ c}. This means that
the two states are indistinguishable to KServ—it cannot observe
VMm’s update to pfn 2.

1786

Although previous work used noninterference assertions to verify
information-flow security [34], [35], [36], they do not address two
key issues that we solve in MicroV, concurrency and intentional
information flow.

1) Concurrency: We extend previous work on noninterference
in a sequential setting [35] to our multiprocessor specification. We
prove noninterference for big steps, meaning that some principal
always steps from an active state to its next active state, without
knowledge of concurrent principals. We say a state is active if we
are considering indistinguishability with respect to some principal
p’s PDL, and p will make the next step on CPU c; otherwise the
state is inactive. We decompose each big step noninterference proof
into proofs of a set of auxiliary lemmas for a given principal p:

Lemma 1. Starting from any two active, indistinguishable states
σ1 and σ′1, i.e., V(σ1, p)=V(σ′1, p), if p makes CPU-local moves
to states σ2 and σ′2, then V(σ2, p)=V(σ′2, p).

Lemma 2. Starting from any inactive state σ, if some other
principal makes a CPU-local move to inactive state σ′, then
V(σ, p)=V(σ′, p).

Lemma 3. Starting from any two inactive, indistinguishable states
σ1 and σ′1, i.e., V(σ1, p)=V(σ′1, p), if some other principal makes
CPU-local moves to active states σ2 and σ′2, respectively, then
V(σ2, p)=V(σ′2, p).

Lemma 4. Starting from any two indistinguishable states σ1 and
σ′1, i.e., V(σ1, p)=V(σ′1, p), if query moves result in states σ2 and
σ′2, respectively, then V(σ2, p)=V(σ′2, p).
In other words, we prove in the first three lemmas that state
indistinguishability is preserved in each possible step of
execution due to CPU-local moves, then based on rely-guarantee
reasoning [33], show in the last lemma that state indistinguishability
must also be preserved due to query moves.

2) Intentional information release: Because commodity systems
such as KVM may allow information release when explicitly
requested, to support KVM’s various virtualization features, we
must model this intentional information release and distinguish it
from unintentional data leakage. We call data that is intentionally
released non-private data.

Example 3 (Supporting declassification). To illustrate the chal-
lenge of supporting intentional information release, suppose VMm
grants KServ access to gfn 3 for performing network I/O. Since
KServ may copy gfn 3’s data to its private memory, gfn 3’s data
should be included in KServ’s private data lens. Private pages of
VMm (e.g., gfn 2) are handled the same as the previous example—
the content of gfn 2, whether b or b′, are not included in KServ’s
PDL, and do not affect state indistinguishability:

VMmmay encrypt the data in gfn 2 and share it with KServ through
gfn 3, so that KServ can send the encrypted data via a backend par-
avirtual network I/O driver. Yet starting from two indistinguishable
states to KServ with different gfn 2 contents b and b′, writing en-

crypted dataB andB′ to gfn 3 leads to distinguishable states, since
the differences betweenB andB′ are exposed to KServ’s PDL:

The problem is that this information release does not preserve state
indistinguishability, even though it does not break confidentiality
since KServ cannot decrypt the private data. In general, what is
declassified is not known in advance; any page of a VM’s memory
may be declassified at any time, and the data may be declassified
for an arbitrary amount of time.

To address this problem, MicroV introduces data oracles
to model intentionally released information, such as encrypted
data. Instead of using the actual value of such information, the
value is specified by querying the data oracle. A data oracle is a
deterministic function that generates a sequence of integers based on
some machine state. We use a function based on a principal’s PDL,
guaranteeing that the value returned depends only on the state of
the principal reading the value. Each principal logically has its own
data oracle, ensuring that the returned value does not depend on the
behavior of other principals. For example, if the encrypted data is
masked using a data oracle and the next integer returned by KServ’s
data oracle is Ω, the value of the next shared, encrypted data read
by KServ will always be specified as Ω, whether the encrypted data
isB orB′. This way, intentional information release can be masked
by data oracles and will not break state indistinguishability:

Data oracles are only used to mask reading non-private data,
decoupling the data read from the writer of the data. Integer
sequences returned by data oracles are purely logical, and can
yield any value; thus, our noninterference proofs account for all
possible values read from a data oracle. A data oracle is applied
dynamically, for example, masking a page of memory when it is
declassified, then no longer masking the page when it is used for
private data. Note that unintentional information leakage, such as
sharing unencrypted private data, is not modeled by data oracles
and will be detected since it will break state indistinguishability.

IV. RETROFITTING KVM INTO SEKVM

To use microverification, we observe that many parts of a hyper-
visor have little to do with security. If we can extract the core com-
ponents that enforce security and isolate them from the rest of the
system, we may focus our proof effort on the core while obtaining se-
curity guarantees for the entire system. Based on this observation, we
retrofit KVM/ARM into a small core, KCore, and a set of untrusted
services, KServ, according to the following desired security policies:

1787

Fig. 5: Architecture of SeKVM.

Policy 1. vmdataiso:
• vm-cpuiso: a given VM’s data in CPU registers is isolated from

KServ and all other VMs.
• vm-memiso: a given VM’s data in private memory is isolated

from KServ and all other VMs.
• vm-memdeviso: a given VM’s data in private memory is isolated

from all devices assigned to KServ and all other VMs.
Policy 2. vm-iodataiso: the confidentiality and integrity of a given
VM’s I/O data is protected from KServ and all other VMs.
Policy 3. data-declassification: a given VM’s non-private data
may be intentionally released to support virtualization features.

Figure 5 shows the retrofitted KVM, SeKVM. KCore runs in Arm
VE’s higher-privilege hypervisor level, EL2. It implements the func-
tions that enforce access control or need direct access to VM data, as
well as the VM interface, which can logically be thought of as a set
of trap handlers. KServ runs at a lower-privilege kernel level, EL1. It
includes the Linux host OS and most of the KVM codebase. Just like
vanilla KVM, VMs run user-level code in EL0, the lowest privilege
level, and kernel code in EL1. Further details are described in [7].

When a VM raises an exception, it traps to KCore, which can
handle the exception directly or invoke KServ for more complex
functionality. Under the data-declassification policy, KServ
provides functionality that does not require access to private VM
data, such as resource allocation, bootstrapping and scheduling
VMs, and management features like snapshots and migration.
KCore isolates KServ’s access to VM resources to protect data
confidentiality and integrity. KServ does not have the privilege
to update VM data directly. Instead, KCore provides a restricted
hypercall interface to KServ for operations which require VM data
or EL2 privileges. The interface allows KServ to write updated
data to a memory page shared with KCore, which validates the
update before applying it to the real VM data. KCore also validates
cryptographic signatures of VM images and encrypts VM data
before it is exported for snapshots or migration.

Policy vm-cpuiso. When a VM is running on a CPU, its VCPU
registers are stored in CPU registers only accessible to the VM.
When a VM exits, and before running KServ, KCore saves the
VM’s VCPU registers in KCore’s private memory, inaccessible to
KServ or other VMs, and context switches the CPU so the VM’s
VCPU state is no longer available in the CPU registers. KCore may
share non-private data from VM general purpose registers to KServ
in accordance with the data-declassification policy.

Policy vm-memiso. KCore ensures that a VM’s private memory
cannot be accessed by KServ or other VMs. In its own private
memory, KCore tracks the ownership and sharing status of each
page. KCore ensures that any allocated page is owned by either itself,
KServ, or a VM. KCore manages stage 2 page tables, Arm’s NPTs,
for KServ and VMs to virtualize and restrict their memory access,
which in turn manage their own stage 1 page tables. By default,
KServ owns unused physical pages. KCore delegates complex
VM memory allocation to KServ, but validates its page allocation
proposals before performing the mapping itself, to ensure that the
page is not already owned by another VM or itself. KCore unmaps
the newly allocated page from KServ’s stage 2 page tables before
mapping the page to the VM. When a page is freed, KCore zeroes
out that page before allowing KServ to reallocate it, ensuring that
reclaimed memory does not leak VM data.

Policy vm-memdeviso. KCore leverages the System Memory
Management Unit (SMMU) [37], Arm’s IOMMU, to ensure that
a VM’s private memory cannot be accessed by devices assigned
to KServ or other VMs, including protecting against DMA attacks.
By taking full control of the SMMU, KCore ensures devices can
only access memory through the SMMU page tables it manages. It
uses the SMMU page tables to enforce memory isolation. KCore
validates all SMMU operations by only allowing the driver in KServ
to program the SMMU through Memory Mapped IO (MMIO)
accesses, which trap to KCore, and SMMU hypercalls. MMIO
accesses are trapped by unmapping the SMMU from KServ’s stage
2 page tables. SMMU hypercalls (1) allocate/deallocate an SMMU
translation unit, and its associated page tables, for a device, and (2)
map/unmap/walk the SMMU page tables for a given device. As part
of validating a KServ page allocation proposal for a VM, KCore
also ensures that the page being allocated is not mapped by any
SMMU page table for any device assigned to KServ or other VMs.

Policy vm-iodataiso. To avoid additional complexity in KCore,
we rely on KServ to support I/O virtualization. Similar to previous
work [7], [38], [39], we assume VMs employ end-to-end encryption
to protect I/O data against KServ.

Policy data-declassification. By default, KServ has no access to
VM data. KCore provides grant and revoke hypercalls that a
VM may use to voluntarily grant and revoke KServ access to the
VM’s pages. KCore also allows intentional information flow via a
VM’s general purpose registers (GPRs) to KServ to support MMIO.

V. VERIFYING SEKVM

We verify SeKVM by decomposing the KCore codebase into 34
security-preserving layers. From KCore’s modular implementation,
we craft its layer specification based on four layer design principles.
First, we introduce layers to simplify abstractions, when functional-
ity needed by lower layers is not needed by higher layers. Second, we
introduce layers to hide complexity, when low-level details are not
needed by higher layers. Third, we introduce layers to consolidate
functionality, so that such functionality only needs to be verified
once against its specification. For instance, by treating a module used
by other modules as its own separate layer, we do not have to redo
the proof of that module for all of the other modules, simplifying
verification. Fourth, we introduce layers to enforce invariants,
which are used to prove high-level properties. Introducing layers
modularizes verification, reducing proof effort and maintenance.

1788

Hypercall Handlers:
VM management: register_vm, register_vcpu,
set_boot_info, remap_boot_image_page,
verify_vm_image, clear_vm, encrypt_vcpu,
decrypt_vcpu, encrypt_vm_mem, decrypt_vm_mem
Timer: set_timer
SMMU: smmu_alloc_unit, smmu_free_unit, smmu_map,
smmu_unmap, smmu_iova_to_phys
VM run: run_vcpu
VM-only: grant, revoke, psci_power
Exception Handlers:
Page Fault: host_page_fault, vm_page_fault
Interrupts: handle_irq
WFI/WFEs: handle_wfx
SysReg Access: handle_sysreg
Memory Operations:
mem_load, mem_store, dev_load, dev_store

TABLE I: TrapHandler interface. KServ calls VM management
hypercalls to boot and terminate VMs and obtain encrypted VM data
for migration and snapshots, the timer hypercall to set timers, SMMU
hypercalls to configure the SMMU, and the run_vcpu hypercall to run
a VCPU. VMs call VM-only hypercalls, not available to KServ, for power
management and to grant and revoke KServ access to VM (encrypted)
data for full KVM I/O support. Exception handlers handle stage 2 page
faults and other VM exceptions. Memory operations are not part of the
interface for KCore’s implementation, but are included in its specification
to logically model page-translated memory accesses issued by KServ and
VMs over our abstract hardware model.

We incrementally prove that each module of KCore’s
implementation transparently refines its layer specification, starting
from the bottom machine model until reaching the top layer,
then prove noninterference using the top layer specification. The
bottom machine model, AbsMachine, defines the machine state, an
instruction set, and a set of trusted primitives, such as cryptographic
library routines. The top layer specification, TrapHandler, is
the interface KCore exposes to its VMs and KServ. We prove
noninterference for any behavior of KServ and VMs interacting with
the TrapHandler interface, so that proven security properties hold
for the whole SeKVM system with any implementation of KServ.

A. Proving KCore Refines TrapHandler

Table I presents hypercalls and exception handlers provided by the
top-level interface TrapHandler; Appendix A has more details. All
proofs are developed and checked in Coq. We briefly describe some
of the refinement proofs, but omit details due to space constraints.

1) Synchronization: KCore’s spinlocks use an Arm assembly
lock implementation from Linux. This implementation uses acquire
and release barriers to prevent instruction reordering within the lock
routines, such that we can soundly verify that spinlocks correctly
enforce mutual exclusion in a similar manner to CertiKOS [5]. We
prove that all shared memory accesses in the code are correctly
protected by spinlocks. Because the barriers also prevent memory
accesses from being reordered beyond their critical sections, we
can easily show that KCore only exhibits sequentially consistent
behavior, such that our guarantees over KCore verified using a
sequentially consistent model still hold on Arm’s relaxed memory
model. The lock proofs required 4 layers.

2) VM management: KCore tracks the lifecycle of each VM
from boot until termination, maintaining per-VM metadata in a
VMInfo data structure. For example, KCore loads VM boot images
into protected memory and validates signed boot images using an

implementation of Ed25519. The implementation is verified by
porting the HACL* [14] verified crypto library to EL2. Because
no C standard library exists for EL2, this involved replacing the C
library function for memcpy used by HACL* with a standalone
memcpy implementation for EL2, which we verified. Similarly,
KCore provides crypto hypercalls using an implementation of AES,
also verified by using HACL*. Beyond HACL*, verifying VM
management required 4 layers.

3) VM CPU data protection: KCore saves VM CPU registers
to KCore memory in a VCPUContext data structure when a VM
exits, and restores them to run the VM. KCore does not make VM
CPU data directly available to KServ, and validates any updates
from KServ before writing them to the VM CPU data it maintains
in KCore memory. Many of the functions for saving, restoring, and
updating VM CPU data involving looping over registers to initialize,
copy, and process data. We verify these functions by first showing
that the loop body refines an atomic step using transparent trace
refinement, then use induction to prove that arbitrary many iterations
of the loop refine an atomic step. Finally, we use induction to prove
the loop condition is monotonic so that it will eventually terminate.
Verifying protection of the VM CPU data required 3 layers.

4) Multi-level paging with huge page support: KCore manages
its own stage 1 page table and a stage 2 page table per principal.
KCore assigns a dedicated page pool for allocating stage-2 page
tables to each principal, each capped with a page count quota,
ensuring each principal’s allocation cannot interfere with others’.
Like KVM, KCore’s page tables support multiprocessor VMs, 3-
and 4-level multi-level paging with dynamically allocated levels,
and huge pages to optimize paging performance; normal pages are
4KB and huge pages are 2MB.

Because page tables can be shared across multiple CPUs, a com-
mon feature of multiprocessor hypervisors, we use transparent trace
refinement to prove that their implementation refines their specifica-
tion (a logical map). Transparent trace refinement was essential for
verifying other layers that use stage 2 page tables, simplifying their
refinement by allowing the proofs to treat the primitives of the stage
2 page table map specification as atomic computation steps. Ap-
pendix B has more details. Using layers allowed most of the refine-
ment proofs to be written with the page table implementation details
abstracted away, making it possible to prove, for the first time, the
functional correctness of a system that supports shared page tables.

To prove that the multi-level page table implementation refines
the abstract map, we first show that the page table is a tree structure
with page table entries stored in the leaves, thereby guaranteeing
that multiple gfns cannot share the same page table entries. We then
prove the tree is equivalent to storing page table entries in an array
indexed by gfn. To verify huge page support, our proof additionally
involves considering four possible invariant combinations: (1)
changing a regular page mapping does not affect any regular page
mappings; (2) changing a regular page mapping does not affect any
huge page mappings; (3) changing a huge page mapping does not
affect any regular page mappings; and (4) changing a huge page
mapping does not affect any huge page mappings. The basic idea
behind the proof reduces the problem of the multiple page sizes
to dealing with just the one 4KB page size by treating the 2MB
huge page as the equivalent of 512 4KB pages. Overall, the page
table refinement proofs required 4 layers.

5) Memory protection: KCore tracks metadata for each physical

1789

page, including its ownership and sharing status, in an S2Page data
structure, similar to the page structure in Linux. KCore maintains
a global S2Page array for all valid physical memory to translate
from a pfn to an S2Page. This can be specified as an abstract
pfn 7→(owner, share, gfn) mapping, where owner designates the
owner of the physical page, which can be KCore, KServ, or a VM,
and share records whether a page is intentionally shared between
KServ and a VM.

Many of the functions involved in memory protection to
virtualize memory and enforce memory isolation involve nested
locks. Transparent trace refinement enables us to prove that the
implementation with nested locks refines an atomic step, by starting
with the code protected by the inner most nested locks and proving
that it refines an atomic step, then successively proving this while
moving out to the next level of nested locks until it is proven for all
nested locks. The refinement proofs for memory protection required
5 layers, including 3 layers for the S2Page specification.

6) SMMU: KCore manages the SMMU and its page tables to
provide DMA protection. We changed KVM’s SMMU page table
walk implementation to an iterative one to eliminate recursion, which
is not supported by our layered verification approach, since each
layer can only call functions in a lower layer. This is not a significant
issue for hypervisor or kernel code, in which recursion is generally
avoided due to limited kernel stack space. As with KVM, SMMU
page tables for a device assigned to a VM do not change after the
VM boots, but can be updated before the VM boots. We leverage
transparent trace refinement to prove the page table implementation
refines its specification to account for pre-VM boot updates. These
proofs required 9 layers: 4 for SMMU page tables, and 5 for SMMU
hypercalls and handling SMMU accesses.

7) Hypercalls: On top of all above modules, KCore implements
hypercall dispatchers and trap handlers with 5 layers. As shown in
Table I, the top layer specification refined by KCore provides 20
hypercalls and 5 fault handlers. It also exposes basic memory opera-
tions like mem_load and mem_store passed through from the bot-
tom layer, to model the memory access behavior of KServ and VMs.

B. Formulating Noninterference over TrapHandler

Because of security-preserving layers, noninterference only
needs to be formulated and proven over TrapHandler, the top-level
specification of KCore. We define the PDL V for each principal
based on policy vmdataiso and vm-iodataiso. V(σ, p) on a given
CPU c contains all of its private data, including (1) CPU c’s
registers if p is active on c, (2) p’s saved execution (register) context,
and (3) contents of the memory pages owned by p, which we call
the address space of p, including those mapped to p’s stage 2 and
SMMU page tables. V for a VM also contains metadata which can
affect its private data, including the sharing status of its own memory
pages. V for KServ also contains metadata, including ownership
metadata of all memory pages, VM execution metadata, and SMMU
configuration. We then use per-principal data oracles to model the
only three types of non-private data that a VM may intentionally
release according to policy data-declassification: (1) data that
VMs explicitly share and retain using the grant and revoke

hypercalls, (2) MMIO data that KServ copies from/into VM
GPRs, used for hardware device emulation, and (3) VCPU power
state requests that VMs explicitly make using the psci_power

Fig. 6: Noninterference proof for a VM NPT page fault. Upon a page
fault, VM p calls vm_page_fault in two indistinguishable states (σ1
and σ′

1) and traps to KServ, transitioning from active to inactive in both
executions. By Lemmas 4 and 1, σ2 and σ′

2 are indistinguishable. As
KServ performs page allocation, the executions respectively reach states
σ3 and σ′

3 through query moves, then σ4 and σ′
4 through CPU-local

moves. By Lemma 4, σ3 and σ′
3 are indistinguishable. By Lemma 2,

since VM p, and all other VMs, remain inactive in states σ3 and σ′
3, (1)

σ3 and σ4 are indistinguishable in the first execution, and (2) σ′
3 and

σ′
4 are indistinguishable in the second; transitively, σ4 and σ′

4 are also
indistinguishable. Finally, KServ invokes run_vcpu, transitioning VM p
from inactive to active; the executions reach states σ5 and σ′

5, respectively.
By Lemmas 4 and 3, σ5 and σ′

5 are indistinguishable.

hypercall to control their own power management [40]. We also use
data oracles to model data intentionally released by KServ when
providing its functionality: (1) physical page indices proposed by
KServ for page allocation, written to the page table of a faulting
VM, (2) contents of pages proposed by KServ for page allocation,
and (3) scheduling decisions made by KServ. Intuitively, if KServ
has no private VM data, any release of information by KServ cannot
contain such data and can therefore be modeled using data oracles.

We prove noninterference by proving the lemmas from
Section III-B, for the primitives shown in Table I, with respect
to the PDL for each principal. Data oracles are used for proving
noninterference lemmas for the grant and revoke hypercalls,
for vm_page_fault when it is called due to MMIO accesses, and
for hypercalls such as run_vcpu which may declassify data from
KServ to a VM. Our proofs not only verify that the execution
of a principal does not interfere with another’s data, but that one
principal does not interfere with another’s metadata. For instance,
we proved that a VM cannot interfere with KServ’s decision about
VM scheduling, or affect the memory sharing status of another VM.
Furthermore, since we prove that there is no unintentional release
of private VM data to KServ, we also prove that any release of
information by KServ cannot contain such data.

For example, Figure 6 shows how we prove noninterference for
the big step execution of a stage 2 page fault caused by the need
to allocate a physical page. VM p causes KCore’s vm_page_fault

trap handler to run, KCore then switches execution to KServ to
perform page allocation, then KServ calls the run_vcpu hypercall
to cause KCore to switch execution back to the VM with the newly
allocated page. We want to use the lemmas in Section III-B, but
we must first prove them for each primitive. We briefly describe
the proofs, but omit details due to space constraints.

We prove Lemmas 1 to 3 for vm_page_fault, which saves
VM p’s execution context and switches execution to KServ. For
Lemma 1, an active principal must be the VM p. Starting from two
indistinguishable states for VM p, the local CPU’s registers must be
for VM p since it is active and running on the CPU, and must be the

1790

same in two executions. vm_page_fault in two executions will
therefore save the same execution context for VM p; so Lemma 1
holds. For Lemma 2, an inactive principal q must be a VM other
than p. q’s PDL will not be changed by VM p’s page fault, which
only modifies VM p’s execution context and the local CPU’s
registers; so Lemma 2 holds. For Lemma 3, only KServ can become
active after executing vm_page_fault. Its PDL will then include
the local CPU’s registers after the execution. Since KServ’s saved
execution context must be the same in indistinguishable states, the
restored registers will then remain the same; so Lemma 3 holds.

We prove Lemmas 1 to 3 for KServ’s page allocation, which
involves KServ doing mem_load and mem_store operations in its
address space, assuming no KServ stage 2 page faults for brevity.
For Lemma 1, KServ is the only principal that can be active and
executes the CPU-local move, which consists of KServ determining
what page to allocate to VM p. Starting from two indistinguishable
states for KServ, the same set of memory operations within KServ’s
address space will be conducted and the same page index will be
proposed in two executions, so Lemma 1 holds. For Lemma 2, all
VMs are inactive. We prove an invariant for page tables stating
that any page mapped by a principal’s stage 2 page table must be
owned by itself. Since each page has at most one owner, page tables,
and address spaces, are isolated. With this invariant, we prove that
VMs’ states are not changed by KServ’s operations on KServ’s
own address space; so Lemma 2 holds. Lemma 3 does not apply
in this case since KServ’s operations will not make any VM active.

We prove Lemmas 1 to 3 for run_vcpu. For Lemma 1, KServ
is the only principal that can invoke run_vcpu as a CPU-local
move, which consists of KCore unmapping the allocated page from
KServ’s stage 2 page table, mapping the allocated page to VM p’s
stage 2 page table, and saving KServ’s execution context so it can
switch execution back to VM p. Starting from two indistinguishable
states for KServ, run_vcpu in two executions will transfer the
same page from KServ’s page table to VM p’s page table. KServ’s
resulting address spaces remain indistinguishable as the same page
will be unmapped from both address spaces. For Lemma 2, If a
principal q stays inactive during the run_vcpu CPU-local move,
it must not be VM p. By the page table isolation invariant, the
transferred page cannot be owned by q since it is initially owned
by KServ, and such a transfer will not affect q’s address space. For
Lemma 3, VM p is the only inactive principal that becomes active
during the run_vcpu CPU-local move. Thus, the page will be
transferred to p’s address space. Starting from two indistinguishable
states for p, the page content will be masked with the same data
oracle query results. p’s resulting address spaces remain the same
and indistinguishable to p, so Lemma 3 holds.

By proving Lemmas 1 to 3 for all primitives, Lemma 4 holds for
each primitive based on rely-guarantee reasoning. We can then use
the proven lemmas to complete the indistinguishability proof for the
big step execution of the stage 2 page fault, as shown in Figure 6.

As another example, a similar proof is done to show noninterfer-
ence for MMIO accesses by VMs. Addresses for MMIO devices
are unmapped in all VMs’ stage 2 page tables. VM p traps to KCore
when executing a MMIO read or write instruction, invoking vm_-

page_fault. KCore switches to KServ on the same CPU to handle
the MMIO access. On an MMIO write, KCore copies the write data
from VM p’s GPR to KServ so it can program the virtual hardware,
which we model using KServ’s data oracle in proving Lemma 3 for

vm_page_fault. Lemmas 4 and 1 are then used to show that indistin-
guishability is preserved between two different executions of VM p.
Lemmas 4 and 2 are used to show indistinguishability as KServ runs.
Finally, KServ calls run_vcpu. On an MMIO read, KServ passes
the read data to KCore so KCore can copy to VM p’s GPR, which we
model using VM p’s data oracle in proving Lemma 3 for run_vcpu.
Lemmas 4 and 3 are then used to show that indistinguishability
holds as KCore switches back to running the VM.

C. Verified Security Guarantees of SeKVM

Our noninterference proofs over TrapHandler guarantee that
KCore protects the confidentiality and integrity of VM data against
both KServ and other VMs, and therefore hold for all of SeKVM.

Confidentiality. We show that the private data of VM p cannot
be leaked to an adversary. This is shown by noninterference
proofs that any big step executed by VM p cannot break the state
indistinguishability defined using the PDL of KServ or any other
VM. There is no unintentional information flow from VM p’s private
data to KServ or other VMs.

Integrity. We show that the private data of VM p cannot be
modified by an adversary. This is shown by noninterference proofs
that any big step executed by KServ or other VMs cannot break the
state indistinguishability defined using the PDL of VM p. VM p’s
private data cannot be influenced by KServ or other VMs.

In other words, SeKVM protects VM data confidentiality and
integrity because we prove that KCore has no vulnerabilities that
can be exploited to compromise VM confidentiality and integrity,
and any vulnerabilities in KServ, or other VMs, that are exploited
also cannot compromise VM confidentiality and integrity.

D. Bugs Found During Verification

During our noninterference proofs, we identified bugs in earlier
unverified versions of SeKVM, some of which were found in the
implementation used in [7]:

1) Page table update race: When proving invariants for page
ownership used in the noninterference proofs, we identified a race
condition in stage 2 page table updates. When allocating a physical
page to a VM, KCore removes it from KServ’s page table, assigns
ownership of the page to the VM, then maps it in the VM’s page
table. However, if KCore is processing a KServ’s stage 2 page fault
on another CPU, it could check the ownership of the same page
before it was assigned to the VM, think it was not assigned to any
VM, and map the page in KServ’s page table. This race could lead
to both KServ and the VM having a memory mapping to the same
physical page, violating VM memory isolation. We fixed this bug
by expanding the critical section and holding the S2Page array
lock, not just while checking and assigning ownership of the page,
but until the page table mapping is completed.

2) Overwrite page table mapping: KCore initially did not check
if a gfn was mapped before updating a VM’s stage 2 page tables,
making it possible to overwrite existing mappings. For example,
suppose two VCPUs of a VM trap upon accessing the same
unmapped gfn. Since KCore updates a VM’s stage 2 page table
whenever a VCPU traps on accessing unmapped memory, the same
page table entry will be updated twice, the latter replacing the former.
A compromised KServ could leverage this bug and allocate two
different physical pages, breaking VM data integrity. We fixed this

1791

Retrofitting Component LOC Verification Component LOC
QEMU additions 70 34 layer specifications 6.0K
KVM changes in KServ 1.5K AbsMachine machine model 1.8K
HACL in KCore 10.1K C code proofs 3.6K
KVM C in KCore 0.2K Assembly code proofs 1.8K
KVM assembly in KCore 0.3K Layer refinements 14.7K
Other C in KCore 3.2K Invariant proofs 1.1K
Other assembly in KCore 0.1K Noninterference proofs 3.7K
Total 15.5K Total 32.7K

TABLE II: LOC for retrofitting and verifying SeKVM.

bug by modifying KCore to update stage 2 page tables only when a
mapping was previously empty.

3) Huge page ownership: When KServ allocated a 2MB page
for a VM, KCore initially only validated the ownership of the first
4KB page rather than all the 512 4KB pages, leaving a loophole
for KServ to access VM memory. We fixed this bug by accounting
for this edge case in our validation logic.

4) Multiple I/O devices using same physical page: KCore
initially did not manage memory ownership correctly when a
physical page was mapped to multiple KServ SMMU page tables,
with each page table controlling DMA access for a different I/O
device, allowing KServ devices to access memory already assigned
to VMs. We fixed this bug by having KCore only map a physical
page to a VM’s stage 2 or SMMU page tables when it is not already
mapped to an SMMU page table used by KServ’s devices.

5) SMMU static after VM boot: KCore initially did not ensure
that mappings in SMMU page tables remain static after VM boot.
This could allow KServ to modify SMMU page table mappings to
compromise VM data. We fixed this bug by modifying KCore to
check the state of the VM that owned the device before updating its
SMMU page tables, and only allow updates before VM boot.

VI. IMPLEMENTATION

The SeKVM implementation is based on KVM from mainline
Linux 4.18. Table II shows our retrofitting effort, measured by LOC
in C and assembly. 1.5K LOC were modified in existing KVM code,
a tiny portion of the codebase, such as adding calls to KCore hyper-
calls. 70 LOC were also added to QEMU to support secure VM boot
and VM migration. 10.1K LOC were added for the implementation
of Ed25519 and AES in the HACL* [14] verified crypto library.
Other than HACL*, KCore consisted of 3.8K LOC, 3.4K LOC in C
and .4K LOC in assembly, of which .5K LOC were existing KVM
code. The entire retrofitting process took one person-year. These
results demonstrate that a widely-used, commodity hypervisor may
be retrofitted with only modest implementation effort.

All of KCore’s C and assembly code is verified. Table II shows
our proof effort, measured by LOC in Coq. 6K LOC were for
KCore’s 34 layer specifications; 1.7K LOC were for the top layer
which defines all of KCore’s behavior while the rest were for the
other 33 layers to enable modular refinement. Although using layers
requires additional effort to write 33 more layer specifications, this
is more than made up for by the reduction in proof effort from
decomposing refinement into simpler proofs for each layer that
can be reused and composed together. 1.8K LOC were for the
machine model. 20.1K LOC were for refinement proofs, including
proofs between KCore’s C and assembly code modules and their
specifications, and proofs between layer specifications. 4.8K LOC
were for noninterference proofs, including invariant proofs for

Name Description
Hypercall Transition from the VM to the hypervisor and return to the VM

without doing any work in the hypervisor. Measures bidirectional
base transition cost of hypervisor operations.

I/O Kernel Trap from the VM to the emulated interrupt controller in the
hypervisor OS kernel, then return to the VM. Measures base cost
of operations that access I/O devices supported in kernel space.

I/O User Trap from the VM to the emulated UART in QEMU and then
return to the VM. Measures base cost of operations that access
I/O devices emulated in user space.

Virtual IPI Issue a virtual IPI from a VCPU to another VCPU running on a
different CPU, both CPUs executing VM code. Measures time be-
tween sending the virtual IPI until the receiving VCPU handles it.

TABLE III: Microbenchmarks.

Microbenchmark unmodified KVM verified KVM
Hypercall 2,896 3,720
I/O Kernel 3,831 4,864
I/O User 9,288 10,903
Virtual IPI 8,816 10,699

TABLE IV: Microbenchmark performance (cycles).

data structures maintained by KCore and proofs to verify security
properties. We did not link HACL’s F* proofs with our Coq proofs,
or our Coq proofs for C code with those for Arm assembly code. The
latter requires a verified compiler for Arm multiprocessor code; no
such compiler exists. The Coq development effort took two person-
years. These results show that microverification of a commodity
hypervisor can be accomplished with modest proof effort.

VII. PERFORMANCE

We compare the performance of unmodified Linux 4.18 KVM
versus our retrofitted KVM, SeKVM, both integrated with QEMU
2.3.50 to provide virtual I/O devices. We kept the software environ-
ments across all platforms as uniform as possible. All hosts and VMs
used Ubuntu 16.04.06 with the same Linux 4.18 kernel. All VMs
used paravirtualized I/O, typical of cloud deployments [41]. In both
cases, KVM was configured with its standard virtio [42] network,
and with cache=none for its virtual block storage devices [43],
[44], [45]. For running a VM using SeKVM, we modified its guest
OS virtio frontend driver to use grant/revoke to explicitly enable
shared memory communication with the backend drivers in KServ.

We ran benchmarks in VMs using unmodified KVM or SeKVM.
Unless otherwise indicated, all VM instances were configured
with 4 VCPUs, 12 GB RAM, and huge page support enabled. All
experiments were run on a 64-bit Armv8 AMD Seattle (Rev.B0)
server with 8 Cortex-A57 CPU cores, 16 GB of RAM, a 512 GB
SATA3 HDD for storage, an AMD 10 GbE (AMD XGBE) NIC
device. The hardware we used supports Arm VE, but not VHE [46],
[47]; SeKVM does not yet support VHE.

A. Microbenchmarks
We ran KVM unit tests [48] to measure the cost of common

micro-level hypervisor operations listed in Table III. Table IV shows
the microbenchmarks measured in cycles for unmodified KVM
and SeKVM. SeKVM incurs 17% to 28% overhead over KVM,
but provides verified VM protection. The overhead is highest for
the simplest operations because the relatively fixed cost of KCore
protecting VM data is a higher percentage of the work that must
be done. These results provide a conservative measure of overhead
since real hypervisor operations will invoke actual KServ functions,
not just measure overhead for a null hypercall.

1792

Name Description
Kernbench Compilation of the Linux 4.9 kernel using allnoconfig

for Arm with GCC 5.4.0.
Hackbench hackbench [49] using Unix domain sockets and 100 process

groups running in 500 loops.
Netperf netperf v2.6.0 [50] running netserver on the server

and the client with its default parameters in three modes:
TCP_STREAM (receive throughput), TCP_MAERTS (send
throughput), and TCP_RR (latency).

Apache Apache v2.4.18 server handling 100 concurrent requests
from remote ApacheBench [51] v2.3 client, serving the 41
KB index.html of the GCC 4.4 manual.

Memcached memcached v1.4.25 using the memtier benchmark v1.2.3
with its default parameters.

MySQL MySQL v14.14 (distrib 5.7.26) running SysBench v.0.4.12
using the default configuration with 200 parallel transactions.

MongoDB MongoDB v4.0.20 server handling requests from a remote
YCSB [52] v0.17.0 client running workload A with 16 concur-
rent threads, readcount=500000, and operationcount=100000.

TABLE V: Application benchmarks.

B. Application Benchmarks

We evaluated performance using real application workloads listed
in Table V. For client-server experiments, the clients ran natively
on an x86 Linux machine with 24 Intel Xeon CPU 2.20 GHz cores
and 96 GB RAM. The clients communicated with the server via
a 10 GbE network connection. To evaluate VM performance with
end-to-end I/O protection, all VMs are configured with Full Disk
Encryption (FDE) in their virtual disk. Using FDE did not have
a significant impact on performance overhead, so results without
FDE are omitted due to space constraints. We used dm-crypt to
create a LUKS-encrypted root partition of the VM filesystem. To
evaluate the extra costs in VM performance, we normalized the
VM results to native hardware without FDE.

We ran application workloads using the following six
configurations: (1) native hardware, (2) multiprocessor (SMP) VM
on unmodified KVM (KVM), (3) SMP VM on SeKVM (SeKVM),
(4) SMP VM on SeKVM without vhost (SMP-no-vhost), and
(5) SMP VM on SeKVM without vhost or huge page support
(SMP-no-vhost-no-huge), and (6) uniprocessor VM on SeKVM
without vhost or huge page support (UP-no-vhost-no-huge). We
ran benchmarks on native hardware using 4 CPUs and the same
amount of RAM to provide a common basis for comparison.
SMP-no-vhost, SMP-no-vhost-no-huge, and UP-no-vhost-no-huge
were used to quantify the performance impact of not having verified
kernel support for virtual I/O (vhost in KVM) [53], huge pages,
and multiprocessor VM execution on multiple CPUs. For VMs, we
pinned each VCPU to a specific physical CPU and ensured that
no other work was scheduled on that CPU [46], [54], [55], [56].

To conservatively highlight microverification’s impact on VM
performance, we measured application performance without full
network encryption, because its cost would mask any overhead
between SeKVM and unmodified KVM. However, for applications
that provide an option to use end-to-end encryption, specifically
Apache and MySQL which have TLS/SSL support, we measured
their performance with and without that option enabled, to show
how the option affects overhead.

Figure 7 shows the overhead for each hypervisor configuration,
normalized to native execution. On real application workloads,
SeKVM incurs only modest overhead compared to unmodified
KVM. In most cases, the overhead for SeKVM is similar to unmod-
ified KVM and less than 10% compared to native. The worst over-

Fig. 7: Application benchmark performance. Overhead for each
hypervisor relative to native execution. A lower score indicates less
overhead; 1 means the performance in a VM is the same as native hardware.

head for SeKVM versus unmodified KVM is for TCP_MAERTS,
which measures bulk data send performance from the VM to a
client. Unmodified KVM achieves near native performance here
because virtio batches packet sends from the VM without trapping.
The cost is greater for SeKVM because the guest OS virtio driver
must trap to KCore to grant KServ access for each packet, though
this can be optimized further. TCP_STREAM, which measures bulk
data receive performance, does not have this overhead because the
virtio backend driver batches packet processing for incoming traffic,
resulting in the additional traps happening less often.

In contrast, the performance of SMP-no-vhost, SMP-no-vhost-
no-huge and UP-no-vhost-no-huge is much worse than KVM and
SeKVM. SMP-no-vhost shows that lack of kernel-level virtual I/O
support can result in more than two times worse performance for
network I/O related workloads such as TCP_STREAM, TCP_RR,
Apache, and Memcached. SMP-no-vhost-no-huge shows that lack
of huge page support adds between 35% to 50% more overhead ver-
sus SMP-no-vhost for hackbench, MySQL, and MongoDB. UP-no-
vhost-no-huge shows that lack of multiprocessor VM support results
in many benchmarks having more than 4 times worse performance
than SeKVM. TCP_STREAM and TCP_MAERTS are bandwidth
limited and TCP_RR is latency bound, so the performance loss
due to using only 1 CPU is smaller than other benchmarks. The
results suggest that a verified system without support for commodity
hypervisor features such as kernel-level virtual I/O, huge pages, and
multiprocessor VMs will have relatively poor performance.

VIII. RELATED WORK

Hypervisor verification. seL4 [4], [57] and CertiKOS [5], [58]
are verified systems with hypervisor functionality, so we compared
their virtualization features against SeKVM. We compare the
verified versions of each system; there is little reason to use
unverified versions of seL4 or CertiKOS (mC2) instead of KVM.
Table VI shows that SeKVM provides verified support for all listed
virtualization features while seL4 and CertiKOS do not. A key
verified feature of SeKVM is page tables that can be shared across
multiple CPUs, which became possible to verify by introducing
transparent trace refinement. This makes it possible to provide
verified support for multiprocessor VMs on multiprocessor hardware
as well as DMA protection. Another key verified feature of SeKVM
is noninterference in the presence of I/O through shared devices
paravirtualized using virtio, made possible by introducing data

1793

Feature SeKVM seL4 CertiKOS
VM boot protection Verified+FC
VM CPU protection Verified+FC
VM memory protection Verified+FC
VM DMA protection Verified+FC
Server hardware Verified
SMP hardware Verified Unverified
SMP VMs Verified
Multiple VMs Verified
Shared page tables Verified+FC
Multi-level paging Verified+FC Unverified
Huge pages Verified
Virtio Verified Unverified Unverified
Device passthrough Verified
VM migration Verified
Linux ease-of-use Verified

TABLE VI: Comparison of hypervisor features. For each feature,
Verified+FC means it is supported with verified VM data confidentiality
and integrity and its functional correctness is also verified, Verified means
it is supported with verified VM data confidentiality and integrity, and
Unverified means it is supported but unverified. A blank indicates the
feature is not available or so severely limited to be of little practical use.

oracles. None of these verified features are available on seL4 or
CertiKOS. Unlike seL4, SeKVM does verify Arm assembly code,
but CertiKOS also links C and x86 assembly code proofs together
by using a verified x86 compiler to produce correct assembly; no
such compiler exists for Arm multiprocessor code. Unlike seL4 and
CertiKOS, SeKVM supports standard Linux functionality.

While various versions of seL4 exist, noninterference properties
and functional correctness have only been verified on a single
uniprocessor version [59]; bugs have been discovered in other seL4
versions [60]. The verified version only supports Armv7 hardware
and has no virtualization support [59]. Another seL4 Armv7 version
verifies the functional correctness of some hypervisor features,
but not MMU functionality [59], [61], which is at the core of a
functional hypervisor. seL4 does not support shared page tables [62],
and verifying multiprocessor and hypervisor support remain future
work [63]. It lacks most features expected of a hypervisor. Its device
support via virtio is unverified and also needs to be ported to its
platform, limiting its virtio functionality. For example, seL4 lacks
support for virtio block devices and has no vhost optimization.
Building a system using seL4 is much harder than using Linux [63].

CertiKOS proves noninterference for the sequential mCertiKOS
kernel [35] without virtualization support and goes beyond seL4
in verifying the functional correctness of the mC2 multiprocessor
kernel with virtualization. However, mC2 provides no data
confidentiality and integrity among VMs. Like seL4, CertiKOS
also cannot verify shared page tables, so it does not provide verified
support for multiprocessor VMs. The verified kernel does not work
on modern 64-bit hardware. It lacks many hypervisor features,
including dynamically allocated page tables for multi-level paging,
huge page support, device passthrough, and VM migration. Its
virtio support does not include vhost, is limited to only certain
block devices, and requires porting virtio to its platform, making
it difficult to keep up with virtio improvements and updates.

Others have only partially verified their hypervisor code to reduce
proof effort. The VCC framework has been used to verify 20% of
Microsoft’s Hyper-V multiprocessor hypervisor, but global security
properties remain unproven [64], [65]. überSpark has been used to
verify the üXMHF hypervisor, but their architecture does not support
concurrent hardware access, and their verification approach foregoes

functional correctness [66], [67]. In contrast, KCore verifiably
enforces security properties by leveraging its verified core while
inheriting the comprehensive features of a commodity hypervisor.

Information-flow security verification. Information-flow security
has previously been proven for a few small, uniprocessor systems
using noninterference [27], [34], [35], [36], [68], [69], [70]. None
of the techniques used generalize to multiprocessor environments,
where refinement can hide unintentional information leakage to con-
current observers. Information-flow security has been verified over a
high-level model of the HASPOC multicore hypervisor design [71],
[72], but not for the actual hypervisor implementation. Furthermore,
the strict noninterference previously proven is of limited value for
hypervisors because information sharing is necessary in commodity
hypervisors like KVM. While some work has explored verifying
information-flow security in concurrent settings by requiring the
use of programming language constructs [73], [74], [75], [76],
they require writing the system to be verified in their respective
proposed languages, and have not been used to verify any real
system. In contrast, SeKVM is written and verified in C without
additional annotations, and information-flow security is proven
while permitting dynamic intentional information sharing, enabling
VMs to use existing KVM functionality, such as paravirtual I/O,
without compromising VM data.

Virtualization for security. Various approaches [61], [77], [78],
[79], [80] divide applications and system components in VMs,
and rely on the hypervisor to safeguard interactions among secure
and insecure components. In contrast, SeKVM decomposes the
hypervisor itself to achieve the first security proof for a commodity
multiprocessor hypervisor.

IX. CONCLUSIONS

We have formally verified, for the first time, guarantees of VM
data confidentiality and integrity for the Linux KVM hypervisor.
We achieve this through microverification, retrofitting KVM with
a small core that can enforce data access controls on the rest of
KVM. We introduce security-preserving layers to incrementally
prove the functional correctness of the core, ensuring the refinement
proofs to the specification preserve security guarantees. We then
use the specification to verify the security guarantees of the entire
KVM hypervisor, even in the presence of information sharing
needed for commodity hypervisor features, by introducing data
oracles. We show that microverification only required modest KVM
modifications and proof effort, yet results in a verified hypervisor
that retains KVM’s extensive commodity hypervisor features,
including support for running multiple multiprocessor VMs, shared
multi-level page tables with huge pages, and standardized virtio
I/O virtualization with vhost kernel optimizations. Furthermore,
our verified KVM performs comparably to stock, unverified KVM,
running real application workloads in multiprocessor VMs with
less than 10% overhead compared to native hardware in most cases.

X. ACKNOWLEDGMENTS

Xuheng Li helped with proofs for assembly code and layer refine-
ment. Christoffer Dall, Deian Stefan, and Xi Wang provided helpful
comments on drafts of this paper. This work was supported in part
by NSF grants CCF-1918400, CNS-1717801, and CNS-1563555.

1794

REFERENCES

[1] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “KVM: the
Linux Virtual Machine Monitor,” in Proceedings of the 2007 Ottawa Linux
Symposium (OLS 2007), Ottawa, ON, Canada, Jun. 2007.

[2] “Hyper-V Technology Overview,” Microsoft, Nov. 2016,
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-
v/hyper-v-technology-overview.

[3] S. J. Vaughan-Nichols, “Hypervisors: The cloud’s potential security Achilles
heel,” ZDNet, Mar. 2014, https://www.zdnet.com/article/hypervisors-the-
clouds-potential-security-achilles-heel.

[4] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch,
and S. Winwood, “seL4: Formal Verification of an OS Kernel,” in Proceedings
of the 22nd ACM Symposium on Operating Systems Principles (SOSP 2009),
Big Sky, MT, Oct. 2009, pp. 207–220.

[5] R. Gu, Z. Shao, H. Chen, X. N. Wu, J. Kim, V. Sjöberg, and D. Costanzo, “Cer-
tiKOS: An Extensible Architecture for Building Certified Concurrent OS Ker-
nels,” in Proceedings of the 12th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 2016), Savannah, GA, Nov. 2016, pp. 653–669.

[6] “The Coq Proof Assistant.” http://coq.inria.fr [Accessed: Dec 16, 2020]
[7] S.-W. Li, J. S. Koh, and J. Nieh, “Protecting Cloud Virtual Machines from

Commodity Hypervisor and Host Operating System Exploits,” in Proceedings
of the 28th USENIX Security Symposium (USENIX Security 2019), Santa
Clara, CA, Aug. 2019, pp. 1357–1374.

[8] C. Dall and J. Nieh, “KVM/ARM: Experiences Building the Linux ARM
Hypervisor,” Department of Computer Science, Columbia University,
Technical Report CUCS-010-13, Jun. 2013.

[9] ——, “KVM/ARM: The Design and Implementation of the Linux ARM
Hypervisor,” in Proceedings of the 19th International Conference on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS 2014), Salt Lake City, UT, Mar. 2014, pp. 333–347.

[10] “Cloud companies consider Intel rivals after the discovery of microchip
security flaws,” CNBC, Jan. 2018, https://www.cnbc.com/2018/01/10/cloud-
companies-consider-intel-rivals-after-security-flaws-found.html.

[11] C. Williams, “Microsoft: Can’t wait for ARM to power MOST of our
cloud data centers! Take that, Intel! Ha! Ha!” The Register, Mar. 2017,
https://www.theregister.co.uk/2017/03/09/microsoft_arm_server_followup.

[12] “Introducing Amazon EC2 A1 Instances Powered By New Arm-
based AWS Graviton Processors,” Amazon Web Services, Nov. 2018,
https://aws.amazon.com/about-aws/whats-new/2018/11/introducing-amazon-
ec2-a1-instances.

[13] “ARM Architecture Reference Manual ARMv8, for ARMv8-A architecture
profile,” ARM Ltd., ARM DDI 0487A.a, Sep. 2013.

[14] J.-K. Zinzindohoué, K. Bhargavan, J. Protzenko, and B. Beurdouche, “HACL*:
A Verified Modern Cryptographic Library,” in Proceedings of the 2017 ACM
Conference on Computer and Communications Security (CCS 2017), Dallas,
TX, Oct. 2017, pp. 1789–1806.

[15] J. Graham-Cumming and J. W. Sanders, “On the Refinement of Non-
interference,” in Proceedings of Computer Security Foundations Workshop
IV, Franconia, NH, Jun. 1991, pp. 35–42.

[16] D. Stefan, A. Russo, P. Buiras, A. Levy, J. C. Mitchell, and D. Mazieres,
“Addressing Covert Termination and Timing Channels in Concurrent
Information Flow Systems,” in Proceedings of the 17th ACM SIGPLAN
International Conference on Functional Programming (ICFP 2012), ser. ACM
SIGPLAN Notices, vol. 47, no. 9, Sep. 2012, pp. 201–214.

[17] J. A. Goguen and J. Meseguer, “Unwinding and Inference Control,” in
Proceedings of the 1984 IEEE Symposium on Security and Privacy (SP 1984),
Oakland, CA, Apr. 1984, pp. 75–86.

[18] A. Sabelfeld and A. C. Myers, “A Model for Delimited Information Release,”
in Proceedings of the 2nd International Symposium on Software Security (ISSS
2003), Tokyo, Japan, Nov. 2003, pp. 174–191.

[19] P. Stewin and I. Bystrov, “Understanding DMA Malware,” in Proceedings
of the 9th International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment (DIMVA 2012), Heraklion, Crete, Greece, Jul.
2013, pp. 21–41.

[20] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, You, Get Off
of My Cloud: Exploring Information Leakage in Third-party Compute
Clouds,” in Proceedings of the 2009 ACM Conference on Computer and
Communications Security (CCS 2009), Chicago, IL, Nov. 2009, pp. 199–212.

[21] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-VM Side Channels
and Their Use to Extract Private Keys,” in Proceedings of the 2012 ACM
Conference on Computer and Communications Security (CCS 2012), Raleigh,
NC, Oct. 2012, pp. 305–316.

[22] G. Irazoqui, T. Eisenbarth, and B. Sunar, “S$A: A Shared Cache Attack That
Works Across Cores and Defies VM Sandboxing – and Its Application to

AES,” in Proceedings of the 2015 IEEE Symposium on Security and Privacy
(SP 2015), San Jose, CA, May 2015, pp. 591–604.

[23] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-Tenant Side-
Channel Attacks in Paas Clouds,” in Proceedings of the 2014 ACM Conference
on Computer and Communications Security (CCS 2014), Scottsdale, AZ, Nov.
2014, pp. 990–1003.

[24] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-Level Cache Side-
Channel Attacks Are Practical,” in Proceedings of the 2015 IEEE Symposium
on Security and Privacy (SP 2015), San Jose, CA, May 2015, pp. 605–622.

[25] M. Backes, G. Doychev, and B. Kopf, “Preventing Side-Channel Leaks in
Web Traffic: A Formal Approach.” in 20th Annual Network and Distributed
System Security Symposium (NDSS 2013), San Diego, CA, Feb. 2013.

[26] K. J. Biba, “Integrity Considerations for Secure Computer Systems,” MITRE,
Technical Report MTR-3153, Jun. 1975.

[27] A. Ferraiuolo, A. Baumann, C. Hawblitzel, and B. Parno, “Komodo: Using
verification to disentangle secure-enclave hardware from software,” in
Proceedings of the 26th ACM Symposium on Operating Systems Principles
(SOSP 2017), Shanghai, China, Oct. 2017, pp. 287–305.

[28] R. Gu, Z. Shao, J. Kim, X. N. Wu, J. Koenig, V. Sjöberg, H. Chen, D. Costanzo,
and T. Ramananandro, “Certified Concurrent Abstraction Layers,” in
Proceedings of the 39th ACM Conference on Programming Language Design
and Implementation (PLDI 2018), Philadelphia, PA, Jun. 2018, pp. 646–661.

[29] X. Leroy, “The CompCert Verified Compiler.” https://compcert.org [Accessed:
Dec 16, 2020]

[30] E. Bugnion, J. Nieh, and D. Tsafrir, Hardware and Software Support for
Virtualization, ser. Synthesis Lectures on Computer Architecture. Morgan
and Claypool Publishers, Feb. 2017.

[31] R. Gu, J. Koenig, T. Ramananandro, Z. Shao, X. N. Wu, S.-C. Weng,
and H. Zhang, “Deep Specifications and Certified Abstraction Layers,” in
Proceedings of the 42nd ACM Symposium on Principles of Programming
Languages (POPL 2015), Mumbai, India, Jan. 2015, pp. 595–608.

[32] R. Keller, “Formal Verification of Parallel Programs,” Communications of the
ACM, vol. 19, pp. 371–384, Jul. 1976.

[33] C. Jones, “Tentative Steps Toward a Development Method for Interfering
Programs.” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 5, pp. 596–619, Oct. 1983.

[34] T. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke, S. Seefried,
C. Lewis, X. Gao, and G. Klein, “seL4: From General Purpose to a Proof of In-
formation Flow Enforcement,” in Proceedings of the 2013 IEEE Symposium on
Security and Privacy (SP 2013), San Francisco, CA, May 2013, pp. 415–429.

[35] D. Costanzo, Z. Shao, and R. Gu, “End-to-End Verification of Information-
Flow Security for C and Assembly Programs,” in Proceedings of the 37th
ACM Conference on Programming Language Design and Implementation
(PLDI 2016), Santa Barbara, CA, Jun. 2016, pp. 648–664.

[36] H. Sigurbjarnarson, L. Nelson, B. Castro-Karney, J. Bornholt, E. Torlak, and
X. Wang, “Nickel: A Framework for Design and Verification of Information
Flow Control Systems,” in Proceedings of the 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 2018), Carlsbad, CA,
Oct. 2018, pp. 287–305.

[37] “ARM System Memory Management Unit Architecture Specification -
SMMU architecture version 2.0,” ARM Ltd., Jun. 2016.

[38] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A. Waldspurger,
D. Boneh, J. Dwoskin, and D. R. Ports, “Overshadow: A Virtualization-based
Approach to Retrofitting Protection in Commodity Operating Systems,” in
Proceedings of the 13th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS 2008), Seattle,
WA, Mar. 2008, pp. 2–13.

[39] O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee, and E. Witchel, “InkTag:
Secure Applications on an Untrusted Operating System,” in Proceedings of
the 18th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS 2013), Houston, TX, Mar. 2013,
pp. 265–278.

[40] “ARM Power State Coordination Interface,” ARM Ltd., ARM DEN 0022D,
Apr. 2017.

[41] Y. Kuperman, E. Moscovici, J. Nider, R. Ladelsky, A. Gordon, and D. Tsafrir,
“Paravirtual Remote I/O,” in Proceedings of the 21st International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS 2016), Atlanta, GA, 2016, pp. 49–65.

[42] R. Russell, “virtio: Towards a De-Facto Standard for Virtual I/O Devices,”
SIGOPS Operating Systems Review, vol. 42, no. 5, pp. 95–103, Jul. 2008.

[43] “Tuning KVM.” http://www.linux-kvm.org/page/Tuning_KVM [Accessed:
Dec 16, 2020]

[44] “Disk Cache Modes,” in SUSE Linux Enterprise Server 12
SP5 Virtualization Guide. SUSE, Dec. 2020, ch. 15. https:
//documentation.suse.com/sles/12-SP4/html/SLES-all/cha-cachemodes.html

[45] S. Hajnoczi, “An Updated Overview of the QEMU Storage Stack,” in
LinuxCon Japan 2011, Yokohama, Japan, Jun. 2011.

1795

https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/hyper-v-technology-overview
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/hyper-v-technology-overview
https://www.zdnet.com/article/hypervisors-the-clouds-potential-security-achilles-heel
https://www.zdnet.com/article/hypervisors-the-clouds-potential-security-achilles-heel
http://coq.inria.fr
https://www.cnbc.com/2018/01/10/cloud-companies-consider-intel-rivals-after-security-flaws-found.html
https://www.cnbc.com/2018/01/10/cloud-companies-consider-intel-rivals-after-security-flaws-found.html
https://www.theregister.co.uk/2017/03/09/microsoft_arm_server_followup
https://aws.amazon.com/about-aws/whats-new/2018/11/introducing-amazon-ec2-a1-instances
https://aws.amazon.com/about-aws/whats-new/2018/11/introducing-amazon-ec2-a1-instances
https://compcert.org
http://www.linux-kvm.org/page/Tuning_KVM
https://documentation.suse.com/sles/12-SP4/html/SLES-all/cha-cachemodes.html
https://documentation.suse.com/sles/12-SP4/html/SLES-all/cha-cachemodes.html

[46] C. Dall, S.-W. Li, J. T. Lim, J. Nieh, and G. Koloventzos, “ARM Virtualization:
Performance and Architectural Implications,” in Proceedings of the 43rd
International Symposium on Computer Architecture (ISCA 2016), Seoul, South
Korea, Jun. 2016, pp. 304–316.

[47] C. Dall, S.-W. Li, and J. Nieh, “Optimizing the Design and Implementation
of the Linux ARM Hypervisor,” in Proceedings of the 2017 USENIX Annual
Technical Conference (USENIX ATC 2017), Santa Clara, CA, Jul. 2017, pp.
221–234.

[48] “KVM Unit Tests.” https://www.linux-kvm.org/page/KVM-unit-tests
[Accessed: Dec 16, 2020]

[49] R. Russell, Z. Yanmin, I. Molnar, and D. Sommerseth, “Improve
hackbench,” Linux Kernel Mailing List (LKML), Jan. 2008,
http://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c.

[50] R. Jones, “Netperf.” https://github.com/HewlettPackard/netperf [Accessed:
Dec 16, 2020]

[51] “ab - Apache HTTP server benchmarking tool.”
http://httpd.apache.org/docs/2.4/programs/ab.html [Accessed: Dec 16, 2020]

[52] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking Cloud Serving Systems with YCSB,” in Proceedings of the
1st ACM Symposium on Cloud Computing (SoCC 2010), Indianapolis, IN, Jun.
2010, pp. 143–154.

[53] “UsingVhost - KVM.” https://www.linux-kvm.org/page/UsingVhost
[Accessed: Dec 16, 2020]

[54] J. T. Lim, C. Dall, S.-W. Li, J. Nieh, and M. Zyngier, “NEVE: Nested
Virtualization Extensions for ARM,” in Proceedings of the 26th ACM
Symposium on Operating Systems Principles (SOSP 2017), Shanghai, China,
Oct. 2017, pp. 201–217.

[55] C. Dall, S.-W. Li, J. T. Lim, and J. Nieh, “ARM Virtualization: Performance
and Architectural Implications,” ACM SIGOPS Operating Systems Review,
vol. 52, no. 1, pp. 45–56, Jul. 2018.

[56] J. T. Lim and J. Nieh, “Optimizing Nested Virtualization Performance Using
Direct Virtual Hardware,” in Proceedings of the 25th International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS 2020), Lausanne, Switzerland, Mar. 2020, pp. 557–574.

[57] G. Klein, J. Andronick, K. Elphinstone, T. Murray, T. Sewell, R. Kolanski,
and G. Heiser, “Comprehensive Formal Verification of an OS Microkernel,”
ACM Transactions on Computer Systems, vol. 32, no. 1, pp. 2:1–70, Feb. 2014.

[58] R. Gu, Z. Shao, H. Chen, J. Kim, J. Koenig, X. Wu, V. Sjöberg, and
D. Costanzo, “Building Certified Concurrent OS Kernels,” Communications
of the ACM, vol. 62, no. 10, pp. 89–99, Sep. 2019.

[59] “seL4 Supported Platforms.” https://docs.sel4.systems/Hardware [Accessed:
Dec 16, 2020]

[60] J. Oberhauser, R. L. de Lima Chehab, D. Behrens, M. Fu, A. Paolillo,
L. Oberhauser, K. Bhat, Y. Wen, H. Chen, J. Kim, and V. Vafeiadis, “VSync:
Push-Button Verification and Optimization for Synchronization Primitives on
Weak Memory Models,” in Proceedings of the 26th International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS 2021), Detroit, MI, Apr. 2021.

[61] G. Klein, J. Andronick, M. Fernandez, I. Kuz, T. Murray, and G. Heiser,
“Formally Verified Software in the Real World,” Communications of the ACM,
vol. 61, no. 10, pp. 68–77, Sep. 2018.

[62] “seL4 Reference Manual Version 11.0.0,” Data61, Nov. 2019.
[63] “Frequently Asked Questions on seL4.” https://docs.sel4.systems/projects/

sel4/frequently-asked-questions.html [Accessed: Dec 16, 2020]
[64] E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal, T. Santen,

W. Schulte, and S. Tobies, “VCC: A Practical System for Verifying Concurrent
C,” in Proceedings of the 22nd International Conference on Theorem Proving
in Higher Order Logics (TPHOLs 2009), Munich, Germany, Aug. 2009, pp.
23–42.

[65] D. Leinenbach and T. Santen, “Verifying the Microsoft Hyper-V hypervisor
with VCC,” in Proceedings of the 16th International Symposium on Formal
Methods (FM 2009), Eindhoven, The Netherlands, Nov. 2009, pp. 806–809.

[66] A. Vasudevan, S. Chaki, L. Jia, J. McCune, J. Newsome, and A. Datta, “Design,
Implementation and Verification of an eXtensible and Modular Hypervisor
Framework,” in Proceedings of the 2013 IEEE Symposium on Security and
Privacy (SP 2013), San Francisco, CA, May 2013, pp. 430–444.

[67] A. Vasudevan, S. Chaki, P. Maniatis, L. Jia, and A. Datta, “überSpark: Enforcing
Verifiable Object Abstractions for Automated Compositional Security Analysis
of a Hypervisor,” in Proceedings of the 25th USENIX Security Symposium
(USENIX Security 2016), Austin, TX, Aug. 2016, pp. 87–104.

[68] C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan, B. Parno, D. Zhang, and
B. Zill, “Ironclad Apps: End-to-End Security via Automated Full-System
Verification,” in Proceedings of the 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 2014), Broomfield, CO, Oct. 2014,
pp. 165–181.

[69] L. Nelson, J. Bornholt, R. Gu, A. Baumann, E. Torlak, and X. Wang, “Scaling
Symbolic Evaluation for Automated Verification of Systems Code with Serval,”
in Proceedings of the 27th ACM Symposium on Operating Systems Principles
(SOSP 2019), Huntsville, Ontario, Canada, Oct. 2019, pp. 225–242.

[70] D. Jang, Z. Tatlock, and S. Lerner, “Establishing Browser Security Guarantees
through Formal Shim Verification,” in Proceedings of the 21st USENIX Security
Symposium (USENIX Security 2012), Bellevue, WA, Aug. 2012, pp. 113–128.

[71] C. Baumann, M. Näslund, C. Gehrmann, O. Schwarz, and H. Thorsen, “A
High Assurance Virtualization Platform for ARMv8,” in Proceedings of the
2016 European Conference on Networks and Communications (EuCNC 2016),
Athens, Greece, Jun. 2016, pp. 210–214.

[72] C. Baumann, O. Schwarz, and M. Dam, “On the verification of system-level
information flow properties for virtualized execution platforms,” Journal of
Cryptographic Engineering, vol. 9, no. 3, pp. 243–261, May 2019.

[73] T. Murray, R. Sison, E. Pierzchalski, and C. Rizkallah, “Compositional
Verification and Refinement of Concurrent Value-Dependent Noninterference,”
in Proceedings of the 29th IEEE Computer Security Foundations Symposium
(CSF 2016), Lisbon, Portugal, Jun. 2016, pp. 417–431.

[74] T. Murray, R. Sison, and K. Engelhardt, “COVERN: A Logic for Compositional
Verification of Information Flow Control,” in Proceedings of the 2018 IEEE
European Conference on Security and Privacy (EuroS&P 2018), London,
United Kingdom, Apr. 2018, pp. 16–30.

[75] G. Ernst and T. Murray, “SecCSL: Security Concurrent Separation Logic,” in
Proceedings of the 31st International Conference (CAV 2019), New York, NY,
Jul. 2019, pp. 208–230.

[76] D. Schoepe, T. Murray, and A. Sabelfeld, “VERONICA: Expressive and
Precise Concurrent Information Flow Security,” in Proceedings of the 33rd
IEEE Computer Security Foundations Symposium (CSF 2020), Boston, MA,
Jun. 2020, pp. 79–94.

[77] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh, “Terra: A
Virtual Machine-based Platform for Trusted Computing,” in Proceedings of the
19th ACM Symposium on Operating Systems Principles (SOSP 2003), Bolton
Landing, NY, Oct. 2003, pp. 193–206.

[78] R. Strackx and F. Piessens, “Fides: Selectively Hardening Software Application
Components Against Kernel-level or Process-level Malware,” in Proceedings
of the 2012 ACM Conference on Computer and Communications Security
(CCS 2012), Raleigh, NC, Oct. 2012, pp. 2–13.

[79] R. Ta-Min, L. Litty, and D. Lie, “Splitting Interfaces: Making Trust Between
Applications and Operating Systems Configurable,” in Proceedings of the 7th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
2006), Seattle, WA, Nov. 2006, pp. 279–292.

[80] Y. Liu, T. Zhou, K. Chen, H. Chen, and Y. Xia, “Thwarting Memory Disclosure
with Efficient Hypervisor-enforced Intra-domain Isolation,” in Proceedings of
the 2015 ACM Conference on Computer and Communications Security (CCS
2015), Denver, CO, Oct. 2015, pp. 1607–1619.

APPENDIX A
KCORE’S TOP-LEVEL INTERFACE AND HYPERCALLS

We describe in more detail the hypercalls and exception handlers
in Table I, provided by KCore’s top-level interface TrapHandler.

A. Hypercalls

• register_vm: Used by KServ to request KCore to create new
VMs. KCore allocates a unique VM identifier, which it returns
to KServ. It also allocates the per-VM metadata VMInfo and a
stage 2 page table root for the VM.

• register_vcpu: Used by KServ to request KCore to initialize
a new VCPU for a specified VM. KCore allocates the
VCPUContext data structure for the VCPU.

• set_boot_info: Used by KServ to pass VM boot image
information, such as the image size, to KCore.

• remap_boot_image_page: Used by KServ to pass one page of
the VM boot image to KCore. KCore remaps all pages of a VM
image to a contiguous range of memory in its address space so
it can later authenticate the image.

• verify_vm_image: Used by KServ to request KCore to
authenticate a VM boot image. KCore authenticates each binary of
the boot image, and refuses to boot the VM if authentication fails.

1796

https://www.linux-kvm.org/page/KVM-unit-tests
http://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c
https://github.com/HewlettPackard/netperf
http://httpd.apache.org/docs/2.4/programs/ab.html
https://www.linux-kvm.org/page/UsingVhost
https://docs.sel4.systems/Hardware
https://docs.sel4.systems/projects/sel4/frequently-asked-questions.html
https://docs.sel4.systems/projects/sel4/frequently-asked-questions.html

Before authenticating a VM image, KCore unmaps all its pages
from KServ’s stage 2 page table to guarantee that the verified
image cannot be later altered by KServ. If authentication succeeds,
KCore maps the boot image to the VM’s stage 2 page table.

• clear_vm: Used by KServ to request KCore to reclaim pages
from a terminated VM. KCore will scrub all pages of the
terminated VM and set their ownership to KServ.

• encrypt_vcpu: Used by KServ to request KCore to export
encrypted VM CPU data; for VM migration and snapshots.

• decrypt_vcpu: Used by KServ to request KCore to import
encrypted VM CPU data; for VM migration and snapshots.
KCore copies the data to a private buffer before decrypting it.

• encrypt_vm_mem: Used by KServ to request KCore to export
encrypted VM memory data; for VM migration and snapshots.

• decrypt_vm_mem: Used by KServ to request KCore to import
encrypted VM memory data; for VM migration and snapshots.
KCore copies the data to a private buffer before decrypting it.

• set_timer: Used by KServ to request KCore to update a privileged
EL2 timer register with a timer counter offset; for timer virtu-
alization since SeKVM offloads timer virtualization to KServ.

• smmu_alloc_unit: Used by KServ to request KCore to allocate
an SMMU translation unit for a given device. KCore sets the
owner of the SMMU translation unit to the owner of the device.

• smmu_free_unit: Used by KServ to request KCore to deallocate
an SMMU translation unit previously used by a device. If a
device was owned by a VM, KCore ensures that deallocation
can succeed when the VM is powered off.

• smmu_map: Used by KServ to request KCore to map a 4KB
page pfn to a device’s SMMU page table, from a device virtual
address (iova) to the hPA of the pfn. KServ rejects the request
if the owner of the pfn is different from the device. KServ is
allowed to map a page to the SMMU page table of a VM owned
device before the VM boots.

• smmu_unmap: Used by KServ to request KCore to unmap an
iova in a device’s SMMU page table. KServ is only allowed to
do so after the VM that owns the device is powered off.

• smmu_iova_to_phys: Used by KServ to request KCore to walk
a device’s SMMU page table. Given an iova, KCore returns the
corresponding physical address.

• run_vcpu: Used by KServ to request KCore to run a VM’s
VCPU on the current CPU. KServ passes the VM and VCPU
identifiers to KCore. KCore context switches to the VCPU and
resolves prior VM exceptions before returning to the VM.

• grant: Used by a VM to grant KServ access to its data in a
memory region. KCore sets the share field in the S2Page

structure for each page in the memory region.
• revoke: Used by a VM to revoke KServ’s access to a previously

shared memory region. KCore clears the share field in the
S2Page structure for each of the pages in the memory region and
unmaps the pages from KServ.

• psci_power: Used by a VM to request KCore to configure VM
power states via Arm’s PSCI power management interface [40];
the request is passed to KServ for power management emulation.

B. Exception Handlers

• host_page_fault: Handles stage 2 page faults for KServ. KCore
builds the mapping for the faulted address in KServ’s stage
2 page table if the access is allowed. An identity mapping is

used for hPAs in KServ’s stage 2 page table, allowing KServ to
implicitly manage all free physical memory.

• vm_page_fault: Handles stage 2 page faults for a VM, which
occur when a VM accesses unmapped memory or its MMIO
devices. KCore context switches to KServ for further exception
processing, to allocate memory for the VM and emulate VM
MMIO accesses. KCore copies the I/O data from KServ to the
VM’s GPRs on MMIO reads, and vice versa on MMIO writes.

• handle_irq: Handles physical interrupts that result in VM exits,
KCore context switches to KServ for the interrupt handling.

• handle_wfx: Handles VM exits due to WFI/WFE instructions.
KCore context switches to KServ to handle the exception.

• handle_sysreg: Handles VM exits due to accessing privileged
system registers, handled directly by KCore.

C. Memory Operations

• mem_load/store: Used to specify regular memory accesses. A
memory access from a currently running principal will walk its
stage 2 page table to translate from a gPA to hPA. If the physical
page is not found or the access permission is violated, a page
fault occurs. If KServ caused the fault, the program counter (PC)
is set to the host_page_fault primitive. If a VM caused the
fault, the PC is set to the vm_page_fault primitive.

• dev_load/store: Used to specify memory accesses by devices.
A memory access from a currently running principal’s device
will walk its SMMU page table to translate from an iova to hPA.

APPENDIX B
EXAMPLE PROOFS

We present a more detailed but still simplified proof of the
primitives involved in handling a VM’s stage 2 page fault, shown in
Figure 8, expanding on the examples in Sections III-A and V-B with
Coq definitions. We describe the refinement proofs for primitives
across four layers which handle the page fault after KServ has
proposed a pfn to allocate and called run_vcpu in TrapHandler,
the top layer. run_vcpu calls assign_to_vm in MemOps to
unmap the page from KServ’s stage 2 page table, update its owner to
the VM, and map the page to the VM’s stage 2 page table. MemOps

updates these stage 2 page tables using set_npt in NPTOps,
which in turn invokes basic primitives provided by NPTWalk.

Layer 1: NPTWalk. This layer specifies a set of basic primitives,
verified in lower layers and passed through to higher layers, and
an abstract state upon which they act. The abstract state consists
of a log of shared object events, the local CPU identifier cid, the
currently running VM vmid on CPU cid, and a map from vmid

to each VM’s local state. We define the events and log:
Inductive Event :=
| ACQ_NPT (vmid: Z) | REL_NPT (vmid: Z)
| P_LD (vmid ofs: Z) | P_ST (vmid ofs val: Z)
| ACQ_S2PG | REL_S2PG
| GET_OWNER (pfn: Z) | SET_OWNER (pfn owner: Z)
| SET_MEM (pfn val: Z).

(* Log is a list of events and their CPU identifiers *)
Definition Log := list (Event * Z).

We then define a VM’s local state and NPTWalk’s abstract state:
(* VM local state *)
Record LocalState := {
data_oracle: ZMap.t Z; (* data oracle for the VM *)

1797

// Primitives provided by NPTWalk
extern void acq_lock_npt(uint vmid);
extern void rel_lock_npt(uint vmid);
extern uint pt_load(uint vmid, uint ofs);
extern void pt_store(uint vmid, uint ofs, uint value);
extern void acq_lock_s2pg();
extern void rel_lock_s2pg();
extern uint get_s2pg_owner(uint pfn);
extern void set_s2pg_owner(uint pfn, uint owner);

// Primitive provided by NPTOps
void set_npt(uint vmid, uint gfn, uint pfn) {
acq_lock_npt(vmid);
uint pte = pt_load(vmid, pgd_offset(gfn));
pt_store(vmid, pte_offset(pte,gfn), pfn);
rel_lock_npt(vmid);

}

// Primitive provided by MemOps
uint assign_to_vm(uint vmid, uint gfn, uint pfn) {
uint res = 1;
acq_lock_s2pg();
uint owner = get_s2pg_owner(pfn);
if (owner == KSERV) {

set_npt(KSERV, pfn, 0);
set_s2pg_owner(pfn, vmid);
set_npt(vmid, gfn, pfn);

} else res = 0; // pfn is not owned by KSERV
rel_lock_s2pg();
return res;

}

// Primitive provided by TrapHandler
void run_vcpu(uint vmid) {

...
assign_to_vm(vmid, gfn, pfn);
...

}

Fig. 8: Simplified implementation for handling a stage 2 page fault.
Primitives from four layers are called. For simplicity, other primitives in
the layers are omitted and only two levels of paging are shown.

doracle_counter: Z; (* data oracle query counter *)
...

}.

(* Abstract state *)
Record AbsSt := {
log: Log;
cid: Z; (* local CPU identifier *)
vid: Z; (* vmid of the running principal on CPU cid *)
lstate: ZMap.t LocalState; (* per-VM local state *)

}.

The abstract state does not contain shared objects, which are
constructed using the log through a replay function:
(* Shared objects constructed using replay function *)
Record SharedObj := {
mem: ZMap.t Z; (* maps addresses to values *)
s2pg_lock: option Z; (* s2pg lock holder *)
pt_locks: ZMap.t (option Z); (* pt lock holders *)
pt_pool: ZMap.t (ZMap.t Z); (* per-VM page table pool *)
(* s2pg_array maps pfn to (owner, share, gfn) *)
s2pg_array: ZMap.t (Z * Z * Z);

}.

Fixpoint replay (l: Log) (obj: SharedObj) :=
match l with
| e::l’ => match replay l’ obj with

| Some (obj’, _) => replay_event e obj’
| None => None
end

| _ => Some st
end.

The replay function recursively traverses the log to reconstruct
the state of shared objects, invoking replay_event to handle each
event and update shared object state; this update may fail (i.e.,

return None) if the event is not valid with respect to the current
state. For example, the replay function returns the load result for
a page table pool load event P_LD, but the event is only allowed
if the lock is held by the current CPU:
Definition replay_event (e: Event) (obj: SharedObj) :=
match e with
| (P_LD vmid ofs, cpu) =>

match ZMap.get vmid (pt_locks obj) with
| Some cpu’ => (*the pt lock of vmid is held by cpu’*)
if cpu =? cpu’ (* if cpu = cpu’ *)
then let pool := ZMap.get vmid (pt_pool obj) in

Some (obj, Some (ZMap.get ofs pool))
else None (* fails when held by a different cpu *)

| None (* fails if not already held *)
end

| ... (* handle other events *)
end.

We then define NPTWalk’s layer interface as a map from function
names to their specifications defined upon the abstract state:
Definition NPTWalk: Layer AbsSt :=
acq_lock_npt 7→ csem acq_lock_npt_spec
⊕ rel_lock_npt 7→ csem rel_lock_npt_spec
⊕ pt_load 7→ csem pt_load_spec
⊕ pt_store 7→ csem pt_store_spec
⊕ acq_lock_s2pg 7→ csem acq_lock_s2pg_spec
⊕ rel_lock_s2pg 7→ csem rel_lock_s2pg_spec
⊕ get_s2pg_owner 7→ csem get_s2pg_owner_spec
⊕ set_s2pg_owner 7→ csem set_s2pg_owner_spec.

These primitives are defined in a language-independent way and
are lifted to C-level semantics through a wrapper function csem, so
that arguments and return values are passed according to C calling
conventions. As discussed in Section III-A, MicroV supports
CPU-local reasoning, using event oracles to encapsulate events
generated by other CPUs. A primitive accessing shared objects
can be specified in a CPU-local manner. For example, pt_load’s
specification queries event oracle o to obtain events from other
CPUs, appends them to the logical log (producing l0), checks the
validity of the load and calculates the load result using replay,
then appends a load event to the log (producing l1):
(* Event Oracle takes the current log and produces

a sequence of events generated by other CPUs *)
Definition EO := Log -> Log.

Definition pt_load_spec
(o: EO) (st: AbsSt) (vmid ofs: Z) :=

let l0 := o (log st) ++ log st in (*query event oracle*)
(* produce the P_LD event *)
let l1 := (P_LD vmid ofs, cid st) :: l0 in
match replay l1 with
(* log is valid and P_LD event returns r *)

| Some (_, Some r) => Some (st {log: l1}, r)
| _ => None
end.

pt_load_spec relies on the assumption that events generated by
other CPUs are valid with respect to the replay function—a rely
condition. When rely conditions hold for all other CPUs, we can
prove that all events generated by the local CPU are also valid—a
guarantee condition. Since each CPU’s rely condition follows from
the guarantee conditions of other CPUs, the execution of all CPUs
can be soundly composed.

Data oracles can be used for primitives that declassify data,
as discussed in Section III-B. For example, set_s2pg_owner

changes the ownership of a page. When the owner is changed
from KServ to a VM vmid, the page contents owned by KServ is
declassified to VM vmid, so a data oracle is used in the specification
of set_s2pg_owner to mask the declassified contents:

1798

Definition set_s2pg_owner_spec
(o: EO) (st: AbsSt) (pfn vmid: Z) :=

let l0 := o (log st) ++ log st in
let l1 := (SET_OWNER pfn vmid, cid st) :: l0 in
match replay l1 with
| Some _ => (* log is valid and lock is held *)

let st’ := st {log: l1}) in
if vid st =? KSERV && vmid != KSERV
then (* pfn is transferred from KServ to a VM *)
mask_with_doracle st’ vmid pfn

else Some st’
| _ => None
end.

We introduce an auxiliary Coq definition mask_with_doracle to
encapsulate the masking behavior:
Definition mask_with_doracle (st: AbsSt) (vmid pfn: Z) :=
let local := ZMap.get vmid (lstate st) in
let n := doracle_counter local in
let val := data_oracle local n in
let l := (SET_MEM pfn val, cid st) :: log st in
let local’ := local {doracle_counter: n+1} in
st {log: l, lstate: ZMap.set vmid local’ (lstate st)}

mask_with_doracle queries the local data oracle of VM vmid

with a local query counter, generates an event to mask the
declassified content with the query result, then updates the local
counter. Since each principal has its own data oracle based on its
own local state, the behavior of other principals cannot affect the
query result. set_s2pg_owner_spec only queries the data oracle
when the owner is changed from KServ to a VM. When the owner
is changed from a VM to KServ, the page is being freed and KCore
must zero out the page before recycling it; masking is not allowed.
We also introduce auxiliary definitions to mask other declassified
data, such as page indices and scheduling decisions proposed by
KServ, which are not shown in this simplified example.

Layer 2: NPTOps. This layer introduces the set_npt primitive
for higher layers to update page table entries, and hides page table
structures and page walk details by removing NPTWalk’s primitives
related to page table pools. Other primitives are passed through.
Definition NPTOps: Layer AbsSt :=
set_npt 7→ csem set_npt_spec
⊕ acq_lock_s2pg 7→ csem acq_lock_s2pg_spec
⊕ rel_lock_s2pg 7→ csem rel_lock_s2pg_spec
⊕ get_s2pg_owner 7→ csem get_s2pg_owner_spec
⊕ set_s2pg_owner 7→ csem set_s2pg_owner_spec.

set_npt’s specification simply generates an atomic event SET_NPT:
Definition set_npt_spec

(o: EO) (st: AbsSt) (vmid gfn pfn: Z) :=
let l0 := o (log st) ++ log st in
let l1 := (SET_NPT vmid gfn pfn, cid st) :: l0 in
match replay l1 with
| Some _ => Some (st {log: l1})
| _ => None
end.

To show set_npt meets the above specification, we prove that its C
code implementation running over NPTWalk faithfully implements
set_npt_spec for all possible interleavings across CPUs:
∀EO, ∃EO’, Mset_npt(EO)@NPTWalk vR set_npt_spec(EO’)

This says that, for any valid event oracle EO of NPTWalk, there
exists a valid event oracle EO’ for NPTOps such that, starting from
two logs relatedR, the logs generated by the implementation and
specification, respectively, are still related byR. Here,R is the re-
finement relation, which maps the SET_NPT event to the following
four consecutive events and maps other events to themselves:

ACQ_NPT P_LD P_ST REL_NPT

To prove this refinement, MicroV first uses CompCert’s
ClightGen to parse the C implementation to its Clight representation
Mset_npt, a C abstract syntax tree defined in Coq. Based on the
semantics of Clight, we can show that, for event oracle EO and log
l, the updated log after executingMset_npt is:

[l, EO1, ACQ_NPT, EO2, P_LD, EO3, P_ST, EO4, REL_NPT, EO5]
where EOn represents other CPUs’ events, from the event oracle.

Since the lock_npt spinlock enforces WDRF over VM vmid’s
shared page table pool pt_poolvmid, events generated by other CPUs
can be safely shuffled across events in the same observer group
over pt_poolvmid using transparent trace refinement. For example,
EO3 can be shuffled to the left of P_LD since the replayed state
before and after P_LD share the same pt_poolvmid, but cannot be
shuffled to the right of P_ST, which belongs to a different observer
group. Thus, we can shuffle the above log to the following:

[l, EO1, EO2, EO3, ACQ_NPT, P_LD, P_ST, REL_NPT, EO4, EO5]
We can then prove that this log transparently refines the log
generated by the specification:

[l′, EO1’, SET_NPT, EO2’]
when the input logs and oracle EO’ satisfy R, i.e., R l l′,
R [EO1’] [EO1, EO2, EO3], andR [EO2’] [EO4, EO5].

We can also show that the following log generated by the insecure
implementation shown in Section III-A cannot be transparently
refined to the specification’s log, because EO4 cannot be shuffled
across observer groups:

[l, EO1, ACQ_NPT, EO2, P_LD, EO3, P_ST, EO4, P_ST, EO5, ...]
Layer 3: MemOps. This layer introduces the assign_to_vm

primitive to transfer a page from KServ to a VM, and hides NPTOps

primitives:
Definition MemOps: Layer AbsSt :=
assign_to_vm 7→ csem assign_to_vm_spec.

assign_to_vm’s specification has a precondition that it must be
invoked by KServ and the vmid must be valid:
Definition assign_to_vm_spec

(o: EO) (st: AbsSt) (vmid gfn pfn: Z) :=
if vid st =? KSERV && vmid != KSERV
then
let l0 := o (log st) ++ log st in
let l1 := (ASG_TO_VM vmid gfn pfn, cid st) :: l0 in
match replay l1 with
| Some (_, Some res)) => (* res is the return value *)

let st’ := st {log: l1} in (* update the log *)
if res =? 1 (* if pfn is owned by KSERV *)
then mask_with_doracle st’ vmid pfn
else Some st’ (* return without masking the page *)

| _ => None
end

(*get stuck if it’s not transferred from KServ to a VM*)
else None.

It transfers a page from KServ to a VM via set_s2pg_owner, so the
contents are declassified and must be masked using the data oracle.

Layer 4: TrapHandler. This top layer interface introduces
run_vcpu, which invokes assign_to_vm and context switches
from KServ to the VM. We first prove that run_vcpu does
not violate the precondition of assign_to_vm. We then prove
noninterference as discussed in Section V-B. We can see here why
the page content will be masked with the same data oracle query
results in the proof of Lemma 3 for run_vcpu in Section V-B. Two
indistinguishable states will have the same VM local states, and
therefore the same local data oracle and counter. Thus, the data
oracle query results must be the same.

1799

