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Abstract
Nested virtualization, running virtual machines and hyper-
visors on top of other virtual machines and hypervisors, is
increasingly important because of the need to deploy vir-
tual machines running software stacks on top of virtualized
cloud infrastructure. However, performance remains a key
impediment to further adoption as application workloads
can perform many times worse than native execution. To
address this problem, we introduce DVH (Direct Virtual
Hardware), a new approach that enables a host hypervisor,
the hypervisor that runs directly on the hardware, to directly
provide virtual hardware to nested virtual machines without
the intervention of multiple levels of hypervisors. We intro-
duce four DVH mechanisms, virtual-passthrough, virtual
timers, virtual inter-processor interrupts, and virtual idle.
DVH provides virtual hardware for these mechanisms that
mimics the underlying hardware and in some cases adds new
enhancements that leverage the flexibility of software with-
out the need for matching physical hardware support. We
have implemented DVH in the Linux KVM hypervisor. Our
experimental results show that DVH can provide near native
execution speeds and improve KVM performance by more
than an order of magnitude on real application workloads.

CCS Concepts • Software and its engineering → Vir-
tual machines; Operating systems; • Computer systems
organization→ Cloud computing; Architectures.

Keywords nested virtualization; hypervisors; I/O virtual-
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1 Introduction
Nested virtualization involves running multiple levels of hy-
pervisors to support running virtual machines (VMs) inside
VMs. It is increasingly important for cloud computing as
deploying VMs on top of Infrastructure-as-a-Service (IaaS)
cloud providers is becomingmore commonplace and requires
nested virtualization support [12, 21, 23, 40, 43]. Furthermore,
operating systems (OSes) including Linux andWindows have
built-in hypervisors to support legacy applications [37] and
enhance security [38]; these OS features require nested vir-
tualization support to run in VMs. However, poor nested
virtualization performance remains a key issue for many ap-
plication workloads and an impediment to further adoption.

Some approaches exist for addressing parts of this problem,
such as device passthrough for improving I/O performance.
Device passthrough directly assigns physical devices to the
nested VM so that the nested VM and the physical device
can interact with each other without the intervention of mul-
tiple layers of hypervisors [6, 9]. For example, the physical
device can deliver data directly to the nested VM. However,
device passthrough comes with a significant cost, the loss
of I/O interposition and its benefits. I/O interposition allows
the hypervisor to encapsulate the state of the VM and de-
couple it from physical devices, enabling important features
such as suspend/resume, live migration [7, 57], I/O device
consolidation, and various VM memory optimizations [8].
Many of these features, especially migration [41], are essen-
tial for cloud computing deployments. Furthermore, device
passthrough requires additional hardware support such as
physical Input/Output Memory Management Units (IOM-
MUs) and Single-Root I/O Virtualization (SR-IOV). Because
of these disadvantages, paravirtual I/O devices are more
commonly used in VM deployments. Unfortunately, nested
virtualization with virtual I/O devices, including paravirtual
I/O devices, incurs high overhead.
We introduce Direct Virtual Hardware (DVH), a new ap-

proach to enhancing nested virtualization performance in
which the host hypervisor, the hypervisor that runs natively
on the hardware, directly provides virtual hardware to nested
VMs. Nested VMs can then interact with the virtual hardware
without the intervention of multiple layers of hypervisors. A
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key characteristic of DVH that makes this possible is that the
virtual hardware is provided by a different hypervisor layer
other than the one responsible for managing the nested VM.
This also has implications for the virtual hardware design.
The virtual hardware appears to intervening layers of hyper-
visors as additional hardware capabilities provided by the
underlying system, even though in actuality, the capabilities
are provided by the host hypervisor in software. DVHmakes
it possible to support novel virtualization optimizations only
in software, and even introduces new virtual hardware capa-
bilities that are not natively supported by the hardware. Like
other real hardware mechanisms, virtual hardware requires
guest hypervisors to be aware of these capabilities to use
them, but is transparent to nested VMs. DVH can be realized
on a range of different architectures. We present four DVH
mechanisms for the x86 architecture: virtual-passthrough,
virtual timers, virtual inter-processor interrupts (IPIs), and
virtual idle.

Virtual-passthrough is a novel yet simple technique for
boosting I/O performance for nested virtualization. Virtual-
passthrough is similar to device passthrough, but assigns
virtual I/O devices to nested VMs instead of physical devices.
Virtual devices provided by the host hypervisor can be as-
signed to nested VMs directly without delivering data and
control through multiple layers of virtual I/O devices. The
nested VM provides a device driver to communicate with
the passed through virtual I/O device, which appears to the
nested VM no different from any other I/O device that it
accesses. Virtual IOMMUs [1] are made available and used
by intervening hypervisors to provide necessary mappings
between different guest physical address spaces to support
transferring data between nested VM memory and the vir-
tual I/O device provided by the host hypervisor. Scalability
is not a problem as many virtual devices can be supported
by a single physical device. Supporting both paravirtual and
emulated I/O devices is straightforward. The technique does
not require hardware support such as physical IOMMUs or
SR-IOV, and easily supports important virtualization features
such as migration.
Virtual timers reduce the latency of programming CPU

timers. On architectures like x86 that do not provide a sepa-
rate timer for VMs, programming a timer from a VM causes
a trap to the hypervisor which needs to emulate the hard-
ware behavior. This results in multiple levels of hypervisor
interventions for nested virtualization. Virtual timers appear
to intervening hypervisors as an additional hardware timer
capability just for VMs to use, but require no additional hard-
ware support beyond existing CPU hardware timers. They
do not need to be emulated by multiple layers of hypervi-
sors. The host hypervisor provides virtual timer emulation
including transparently remapping hardware timers used by
nested VMs to the virtual timers and accounting for timer
offset differences.

Virtual IPIs reduce the latency of sending IPIs between vir-
tual CPUs used by nested VMs. An IPI is a special interrupt
that allows one CPU to interrupt another by setting a register
to indicate the type of message and the destination CPU. Hy-
pervisors prevent VMs from directly configuring the register
to raise IPIs to preserve VM isolation and hypervisor control.
Programming an IPI from a VM causes a trap to the hypervi-
sor which needs to emulate the hardware behavior, resulting
in multiple levels of IPI emulation for nested virtualization.
Virtual IPIs make use of a virtual IPI register which appears
to intervening hypervisors as an additional hardware capa-
bility just for VMs to use. Nested VMs no longer need to trap
to guest hypervisors to send IPIs. Guest hypervisors pass
along virtual CPU mappings to the virtual hardware in the
host hypervisor, enabling the host hypervisor to translate the
nested VM IPI destination CPU to the correct physical CPU.

Virtual idle reduces the latency of switching to and from
low-power mode. OSes switch to low-power mode when
there are no jobs to run. Entering and exiting low-power
mode in a VM is emulated by the hypervisor, resulting in
multiple levels of hypervisor interventions for nested virtual-
ization. Virtual idle leverages existing architectural support
to configure guest hypervisors not to trap the instruction for
entering low-power mode so that only the host hypervisor
provides low-power mode emulation similar to non-nested
virtualization.

We have implemented DVH in the Linux KVM hypervisor
and evaluated its performance. Our results show that DVH
can improve KVM performance by more than an order of
magnitude when running real application workloads using
nested virtualization. In many cases, DVH makes nested
virtualization overhead similar to that of non-nested virtu-
alization even for multiple levels of recursive virtualization.
We also show that DVH can provide better performance
than device passthrough while at the same time enabling
migration of nested VMs, thereby providing a combination
of both good performance and key virtualization features
not possible with device passthrough.

2 Background
Nested virtualization is the ability to run multiple levels of
VMs. Non-nested virtualization runs a hypervisor on phys-
ical hardware and provides a virtual execution environment
similar to the underlying hardware for the VM. This allows
a standard OS designed to run on physical hardware to run
without modifications inside the VM. With nested virtualiza-
tion, the hypervisor must support running another hyper-
visor within the VM, which can in turn run another VM.

We refer to the host hypervisor as the first hypervisor
that runs directly on the hardware, and the guest hypervisor
as the hypervisor running inside a VM. For more levels of
virtualization, we refer to the host hypervisor as the L0 hy-
pervisor, the VM created by the L0 hypervisor as the L1 VM,
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the guest OS or hypervisor as the L1 guest or hypervisor, the
guest OS or hypervisor running on top of the L1 hypervisor
as the L2 guest or hypervisor, and so on.

Exits from a VM to the hypervisor are the main reason for
the overhead in virtualization due to the time spent in the
hypervisor [24] and cache pollution [32]. VMs often exit to
the hypervisor because the guest OS in the VM is accessing
some hardware resource used by both hypervisors and guest
OSes, so the VM cannot be allowed to directly configure and
manipulate the hardware. An exit occurs to the hypervisor
because the hypervisor needs to emulate the hardware be-
havior for the VM to ensure the hypervisor retains control
of the hardware and provides VM isolation. With multiple
levels of virtualization, each hypervisor is responsible for
emulating the hardware behavior for the VMs that it runs.
For example, an L2 guest would exit to the L1 hypervisor,
which would be responsible for emulating the hardware be-
havior for the L2 VM. The L2 guest and L1 hypervisor are
encapsulated in an L1 VM, which is then managed by the L0
hypervisor, but the L0 hypervisor does not have full visibil-
ity into the internal operation of the L1 VM, including the
details of how the L1 hypervisor manages its L2 guest.

Modern hardware such as x86 and ARM systems provides
a single-level of architectural support for virtualization, only
allowing the host hypervisor to directly use virtualization
hardware support [3, 26]. Exits from a nested VM at any
virtualization level do not go directly to its respective hyper-
visor but instead must go first to the host hypervisor, which
then can forward the exit to the guest hypervisor to handle.
For example, an exit from an L3 guest does not go directly
to the L2 hypervisor but instead will first go to the L0 hy-
pervisor, which will forward it to the L1 hypervisor, which
will forward it to the L2 hypervisor via the L0 hypervisor
to be handled. Guest hypervisors cannot directly use virtu-
alization hardware support, which results in exits from the
guest hypervisor to the host hypervisor so it can emulate the
virtualization hardware. Because of the need for emulation,
virtualization operations performed by the guest hypervisors
are much more expensive than those performed by the host
hypervisor, which can directly use the hardware. Each exit
from a nested VM, therefore, can result in many more exits
due to virtualization level switches and further virtualization
operation emulation, causing a dramatic increase in virtual-
ization overhead due to exit multiplication [6, 36], depicted
in Figure 1a.

3 Design
DVH mitigates the exit multiplication problem of nested
virtualization by having the host hypervisor directly provide
virtual hardware to nested VMs, which reduces the need
for forwarding nested VM exits to the guest hypervisor. Vir-
tual hardware appears to guest hypervisors as additional
hardware capabilities provided by the underlying system,

L0

L1 L2

1. Access
hardware

2. Switch to L1
with multiple
traps to L0

3. Emulate
hardware for L2

4. Switch to L2
with multiple
traps to L0

5. Return 
to L2

(a) L2 hardware access without DVH causing exit multiplication

             L0

L1

2. Emulate
hardware for L2

Direct Virtual
Hardware (DVH)

L2

3. Return 
to L2

1. Access
hardware

0. Configure DVH
for L2 use 

(b) L2 hardware access with DVH

Figure 1. Hardware access from nested VM

even though the virtual hardware is in actuality provided in
software by the host hypervisor. Because guest hypervisors
don’t need to use virtual hardware for their own execution,
nested VMs can be allowed to access, configure, and ma-
nipulate virtual hardware without the need to exit to guest
hypervisors for emulating the respective hardware behavior
as shown in Figure 1b. DVH is designed to be transparent to
nested VMs. The host hypervisor maps the virtual hardware
to what the nested VM perceives is the physical hardware,
requiring no changes to nested VMs.

Directly providing virtual hardware to VMs does require
exits from the VM to the host hypervisor because virtual
hardware is not real hardware, so the host hypervisor needs
to emulate the hardware behavior for the VM. DVH therefore
trades exits to guest hypervisors for exits to the host hypervi-
sor. For non-nested virtualization, DVH provides no real ben-
efit because it still requires exits to the hypervisor. However,
for nested virtualization, the potential benefit is significant
because exits to just the host hypervisor are much less expen-
sive than exits to guest hypervisors. On modern hardware
with single-level architectural support for virtualization, all
exits always go first to the host hypervisor. If the exit needs
to be handled by a guest hypervisor, the host hypervisor then
forwards the exit to the guest hypervisor. Fundamentally, an
exit to a guest hypervisor is more expensive than an exit to
the host hypervisor by at least a factor of two because it also
requires at least one exit to the host hypervisor. In practice,
an exit to a guest hypervisor is much more expensive than a
factor of two because it often requires many additional exits
to the host hypervisor to perform guest hypervisor’s oper-
ations that are not allowed to execute natively. By trading
potentially many exits due to switching to guest hypervisors
for one exit to the host hypervisor, DVH can potentially
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bring the cost of nested virtualization down to non-nested
virtualization, in which exit multiplication does not exist.

DVH differs from previous approaches such as a hypervi-
sor providing virtual hardware to its guests or architecture
extensions for nested virtualization. In the first approach,
the hypervisor providing the virtual hardware is the same
as the hypervisor responsible for managing the VM itself. In
contrast, DVH provides virtual hardware from a hypervisor
layer different from the one responsible for managing the
VM, thereby providing the hypervisor managing the VM
with an abstraction that appears to be real hardware. For
nested virtualization, DVH gains its advantages by providing
virtual hardware directly from the host hypervisor, not from
the guest hypervisor. Unlike previous approaches, DVH pro-
vides virtual hardware directly to the nested VM so there is
no longer a need to exit to the guest hypervisor. In the second
approach, which includes VMCS shadowing on x86 [27] and
NEVE on ARM [36], architecture extensions defer unneces-
sary traps from the guest hypervisor, resulting in less traps
to the host hypervisor in steps 2 and 4 in Figure 1a. However,
the number of exits from nested VMs to the guest hypervisor,
which is the root cause of the nested virtualization overhead,
does not change. In contrast, DVH directly addresses the root
cause and reduces the number of exits from the nested VM
to the guest hypervisor. This completely removes steps 2 and
4 in Figure 1a when virtual hardware is supported. Architec-
tural support for nested virtualization and DVH are comple-
mentary, optimizing different aspects of nested virtualization.
For cases where DVH cannot avoid exiting to the guest hy-
pervisor, for example, due to a hypercall from a nested VM,
the architectural support can help to reduce overhead.
DVH provides at least two other benefits for nested vir-

tualization. First, it preserves the host hypervisor’s ability to
interpose on virtual hardware accesses, allowing it to trans-
parently observe, control, and manipulate those accesses.
Second, because virtual hardware is just software, it is not
limited by physical hardware. Virtual hardware can be de-
signed to be the same as an existing physical hardware speci-
fication, regardless of the existance of the physical hardware
on the system. Virtual hardware can also be designed to ex-
tend the existing hardware to provide more powerful and
efficient hardware to the VMs. No physical hardware support
is required.
While the guest hypervisor no longer needs to emulate

hardware accesses from nested VMs with DVH, it does need
to configure and manage the virtual hardware. The guest hy-
pervisor needs to check if virtual hardware is available on the
system, and configure the virtual hardware for use by nested
VMs as shown in step 0 in Figure 1b. An important aspect of
the guest hypervisor’s configuration is to enable the host hy-
pervisor to obtain any information it needs from the guest hy-
pervisor to emulate the virtual hardware for the nested VM.
This can include information internal to how the guest hyper-
visor manages its nested VM, which would not be accessible

to the host hypervisor unless it is provided by the guest hy-
pervisor. The information can be passed to the host hypervi-
sor via either existing architectural support for virtualization
or new virtual hardware interfaces designed for this purpose.
DVH is essentially a system design concept, which can

be applied to and realized on different architectures with
single-level virtualization hardware support. We introduce
several DVH mechanisms for the x86 architecture, as dis-
cussed in Sections 3.1 to 3.4. We have also directly used DVH
mechanisms such as virtual-passthrough on other architec-
tures such as ARM, but omit further details due to space
constraints. DVH can be easily used with additional levels of
nested virtualization and supports key virtualization features
such as live migration, as discussed in Sections 3.5 and 3.6.

3.1 Virtual-passthrough
In the widely-used traditional virtual I/O model, VMs in-
teract with virtual I/O devices provided by the hypervisor;
physical I/O devices are not visible to a VM. Each I/O request,
such as sending a network packet or reading a file, is trapped
to the hypervisor. The hypervisor processes the request in
software, typically leveraging underlying physical devices,
and sends an interrupt to the VM to notify it when the I/O
request has been completed. For nested I/O virtualization,
as shown in Figure 2a, the hypervisor at each level provide
its own virtual I/O devices to its VMs in software, which is
transparent to the underlying hypervisors. However, this
cascade of virtual devices requires the hypervisor at each
level to emulate the device behavior, resulting in a multitude
of exits due to exit multiplication and poor performance.
Device passthrough, shown in Figure 2b, directly assigns
physical devices to the nested VM to avoid this cost [6, 9],
but at the loss of I/O interposition and its benefits [8].
We introduce virtual-passthrough, a DVH technique for

boosting I/O performance for nested virtualization. Virtual-
passthrough is similar to device passthrough in allowing
a nested VM to directly access the I/O device, but assigns
virtual I/O devices to nested VMs instead of physical I/O
devices. Loosely speaking, virtual-passthrough takes the vir-
tual I/O device model for the host hypervisor and combines
it with the passthrough model for subsequent guest hyper-
visors. The virtual device provided to the guest hypervisor
is in turn assigned to the nested VM. As shown in Figure 2c,
the nested VM can interact directly with the assigned virtual
device, bypassing the guest hypervisor(s).
Unlike the virtual I/O device model, virtual-passthrough

avoids the need for guest hypervisors to provide their own
virtual I/O devices, removing expensive guest hypervisor
interventions [6, 36] for virtual I/O device emulation. Un-
like the passthrough model, virtual-passthrough supports
I/O interposition and all its benefits as the host hypervisor
provides a virtual I/O device for use by the L1 VM instead
of a physical I/O device. For example, it is straightforward
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Figure 2. I/O virtualization models

to migrate VMs and their nested VMs among different ma-
chines. Virtual-passthrough is a software-only solution and
does not require any additional hardware. It is easily scalable
to support running many VMs on the same hardware for as
many virtual I/O devices as desired; no SR-IOV hardware
support is required.

Virtual-passthrough is hypervisor agnostic. It works trans-
parently with any virtual I/O device that meets physical de-
vice interface specifications such as PCI so that it appears
to the guest hypervisors and OSes on any platform just like
a physical I/O device. Being hypervisor agnostic is useful
for cloud computing deployments where various hypervi-
sors are used on servers [5, 11, 39, 47] and users may freely
choose what guest hypervisors and OSes they want to use.

System configurationVirtual-passthrough requires con-
figuration changes in how devices are managed and used,
but requires no implementation changes for hypervisors
that already support both virtual I/O and passthrough device
models. It can be achieved by simply leveraging existing soft-
ware components already introduced for virtual I/O device
and passthrough models. Virtual-passthrough configures
these components in a different way at each virtualization
level from the two models, but does not modify or intro-
duce any additional components. We discuss in turn how
the host hypervisor, guest hypervisor, and nested VM need
to be configured to support virtual-passthrough.

Using virtual-passthrough, the host hypervisor provides a
virtual I/O device to the guest hypervisor. However, simply
using the virtual I/O configuration used for the standard
virtual I/O device model is not sufficient. Instead, the host
hypervisor must provide virtualized hardware to a VM so
that the guest hypervisor running in the VM thinks it has
sufficient hardware support for the passthrough model.
Figure 3 shows the steps involved for an I/O write oper-

ation with virtual-passthrough; what virtual-passthrough
does for nested VMs is analogous to what passthrough does
for non-nested VMs. In the latter case, passthrough requires
the hardware to provide both a physical I/O device to assign
as well as a physical IOMMU through which the hypervisor
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Figure 3. I/O write operation with (virtual) passthrough

passes mapping information from VM physical addresses to
host physical addresses to hardware. The hypervisor pro-
grams the IOMMU to control what physical memory can be
accessed by the physical device to guarantee VM memory
safety and isolation. The hardware ensures that memory ac-
cesses from the physical I/O device go through the IOMMU
so that the physical I/O device safely accesses the correct
memory addresses in the VM. Similarly, virtual-passthrough
requires the host hypervisor to provide both a virtual I/O
device to assign as well as a virtual IOMMU [1]. The guest
hypervisor programs the virtual IOMMU to control how
memory accesses from the virtual I/O device are mapped to
memory regions in the nested VM. Through thememorymap
information, the host hypervisor can emulate memory ac-
cesses from the virtual I/O device to the nested VM to guaran-
tee memory safety and isolation. With virtual-passthrough,
the host hypervisor ensures that memory accesses from the
virtual I/O device go through the virtual IOMMU so that
the virtual I/O device safely accesses the correct memory
addresses in the nested VM. Unlike the passthrough model,
virtual-passthrough does not require a physical IOMMU.

Using virtual-passthrough, the guest hypervisor simply
assigns the given virtual I/O device directly to the nested VM.
What the guest hypervisor does with virtual-passthrough is
exactly the same as what it does with the regular passthrough
model for nested virtualization. In both cases, the guest
hypervisor is given an I/O device and an IOMMU and, if
properly configured, the guest hypervisor does not know
whether the device or IOMMU are physical or virtual. The
guest hypervisor simply unbinds the device from its own
device driver and creates mappings in the MMU and IOMMU
provided by the underlying hypervisor for direct access be-
tween the device and the nested VM. Unlike the virtual I/O
device model, the guest hypervisor itself does not provides
its own virtual I/O device to the nested VM, but simply passes
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through device access to the virtual I/O device provided by
the host hypervisor.

Any guest hypervisor that provides support for passthrough
can use virtual-passthrough. However, since the passthrough
model was developed for physical I/O devices, most hyper-
visor implementations expect the I/O devices used with the
passthrough framework to conform to physical device inter-
face specifications, the most common of which is PCI. As a
software-only solution, virtual I/O devices, especially par-
avirtual I/O devices, may in general use any device interface,
but those that do not adhere to a standard physical device
interface specification are likely to not be assignable or work
properly with existing passthrough implementations. Fortu-
nately, PCI-based virtual I/O devices [45] are widely avail-
able and are assignable to work transparently with existing
passthrough frameworks to enable virtual-passthrough.
Using virtual-passthrough, the nested VM is directly as-

signed the virtual I/O device. The device is no different from
any other PCI devices from the nested VM’s perspective.
Like the passthrough model, the nested VM just has to have
the correct device driver for the given I/O device. As a result,
virtual-passthrough is designed to work transparently with
nested VMswithout anymodifications other than potentially
device driver installation.

3.2 Virtual Timers
Guest OSes in VMs make use of CPU hardware timers that
can be programmed to raise timer interrupts, such as the
local Advanced Programmable Interrupt Controller (LAPIC)
timer built into Intel x86 CPUs. Because the LAPIC timer
may also be used by hypervisors, when the guest OS pro-
grams the timer, this causes an exit to the hypervisor to
emulate the timer behavior. Emulation can be done by using
software timer functionality, such as Linux high-resolution
timers (hrtimers), or by leveraging architectural support for
timers, such as the VMX-Preemption Timer that is part of
Intel’s Virtualization Technology (VT). For nested virtual-
ization, the guest hypervisor is responsible for emulating the
timer behavior for a nested VM. However, because of exit
multiplication, exiting to the guest hypervisor to emulate
the timer behavior is expensive.

We introduce virtual timers, a DVH technique for reducing
the latency of programming timers in nested VMs. A per vir-
tual CPU virtual timer is software provided by the host hyper-
visor that appears to guest hypervisors as an additional hard-
ware timer capability. For example, for x86 CPUs, the virtual
timer appears as an additional LAPIC timer so that guest hy-
pervisors see two different LAPIC timers, the regular LAPIC
timer and the virtual LAPIC timer. Like the LAPIC timer, the
virtual LAPIC timer has its own set of configuration regis-
ters. Although x86 hardware provides APIC virtualization
(APICv), APICv only provides a subset of APIC functionality
mostly related to interrupt control; there is no such notion
as virtual timers in APICv. As typically done when adding a

new virtualization hardware capability, we add one bit in the
VMX capability register and one in the VM execution con-
trol register to enable the guest hypervisor to discover and
enable/disable the virtual timer functionality, respectively.
The guest hypervisor can let nested VMs use the virtual

timer by setting the bit in the VM execution control register,
which is also visible to the host hypervisor. The guest hyper-
visor sets the virtual timer when first entering the nested VM,
either to initialize it after creating the nested VM or to restore
the previous timer state when running the nested VM. No fur-
ther guest hypervisor intervention is neededwhile the nested
VM is running. When the guest hypervisor switches from
running a nested VM to running another one, it saves the cur-
rently running nested VM state by reading the virtual timer
and restores the next nested VM state to the virtual timer.
Virtual timers are designed to be transparent to nested

VMs and require no changes to nested VMs. Hardware timers
used by nested VMs are transparently remapped by the host
hypervisor to virtual timers. When a nested VM programs
the hardware timer, it causes an exit to the host hypervisor,
which confirms that virtual timers are enabled via the VM
execution control register. Rather than forwarding the exit
to the respective guest hypervisor to emulate the timer, the
host hypervisor handles the exit by programming the virtual
timer directly. This can be done either by using software
timer functionality or architectural timer support, similar to
regular LAPIC timer emulation. Our KVM implementation
uses Linux hrtimers to emulate virtual timer functionality.
Using virtual timers, no guest hypervisor intervention is
needed for nested VMs to program timers, avoiding the high
cost of existing to the guest hypervisor on frequent program-
ming of the timer by the guest OS in a nested VM.
In emulating the timer, the host hypervisor needs to ac-

count for the time difference between the nested VM and
the host hypervisor. However, this is already done by ex-
isting hypervisors. On x86 systems, a hypervisor keeps the
time difference between a VM and itself in a Timestamp
Counter (TSC) offset field in the Virtual Machine Control
Structure (VMCS). Hardware can access the offset during
a VM’s execution so that the guest OS can get the correct
current time without a trap. For the same reason, the host
hypervisor maintains the time difference between a nested
VM and itself in the VMCS for a nested VM. When running a
nested VM, the host hypervisor accesses the timer offset the
guest hypervisor programmed to a VMCS, combines it with
time difference between itself and the guest hypervisor, and
keeps it in the VMCS for a nested VM. Therefore, the host
hypervisor can handle the timer operation from a nested VM
with the correct offset that it already saved.

Virtual timers provide other timer related operations in
a similar way to timer support without DVH. For example,
timer interrupts are delivered first from the host hypervisor
to the guest hypervisor, which in turn causes timer interrupts
to the nested VM. However, unlike regular timers emulated
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by guest hypervisors, virtual timer support can be further op-
timized to deliver timer interrupts to the nested VM directly
from the host hypervisor using posted interrupts [26]. The
only additional information needed is the interrupt vector
number the nested VM programmed for timer interrupts.
Further details are omitted due to space constraints.

3.3 Virtual IPIs
Guest OSes in VMs send IPIs from one CPU to another. The
CPUs controlled by the guest OS are not the physical CPUs,
but virtual CPUs which the hypervisor in turn decides when
and where to run by scheduling them on physical CPUs. On
x86 systems, sending an IPI involves writing the Interrupt
Command Register (ICR) with the identifier of the destina-
tion CPU. Writing to this register in a VM causes an exit to
the hypervisor. The guest OS only knows about virtual CPUs,
so the hypervisor determines the physical CPU identifier
and does the actual write to the ICR to send the IPI between
physical CPUs. Receiving an IPI also causes an exit to the
hypervisor, which in turn delivers the IPI to the VM. For
nested virtualization, multiple levels of hypervisors must
be involved in sending and receiving an IPI. While CPU
posted interrupts [26] are available on x86 systems which
enable IPIs to be received directly by a VM without exiting
to the hypervisor, posted interrupts do not help with the IPI
sending side, which still must exit to the guest hypervisor
and subsequently through multiple layers until the actual
IPI is sent by the host hypervisor.
Figure 4 illustrates the seven steps for sending an IPI be-

tween virtual CPUs (VCPUs) of an L2 VM, specifically from
its VCPU 2 to VCPU 3. Dotted lines indicate what is per-
ceived by each VCPU while solid lines indicate what actually
happens. The guest OS running on the L2 VCPU 2 writes the
interrupt number and destination VCPU (VCPU 3) to the ICR
and thinks that an IPI is delivered to VCPU 3. Instead, writing
to the ICR traps to the L0 hypervisor which forwards the trap
to the L1 hypervisor to emulate the ICR behavior. The L1
hypervisor gets the interrupt number and destination VCPU
number from the ICR. Assuming that CPU posted interrupts
are supported, the L1 hypervisor writes the interrupt num-
ber to the posted-interrupt descriptor (PI descriptor) of the
destination VCPU. It then asks the L1 VCPU that runs the L2
VCPU 3, the L1 VCPU 0, to raise a posted interrupt to the L2
VCPU 3. This traps to the L0 hypervisor because CPU posted
interrupts for the L1 hypervisor are provided by the L0 hyper-
visor. The L0 hypervisor asks the physical CPU 1 on behalf of
the L1 VCPU to raise a posted interrupt. Finally, the physical
CPU 1 gets the original IPI information from the PI descrip-
tor and raises an interrupt to the L2 VCPU 3 directly. No
hypervisor intervention is necessary on the receiving side,
but multiple hypervisors are involved on the sending side.
We introduce virtual IPIs, a DVH technique for reduc-

ing the latency of sending IPIs for nested VMs. Virtual IPIs
involve two mechanisms, a virtual ICR and a virtual CPU
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Figure 4. Nested VM IPI delivery

interrupt mapping table. A per virtual CPU virtual ICR is
software provided by the host hypervisor that appears to
guest hypervisors as an additional hardware capability. We
also add one bit in the VMX capability register and one in the
VM execution control register to enable the guest hypervisor
to discover and enable/disable the virtual IPI functionality,
respectively. The guest hypervisor can let nested VMs use
virtual IPIs by setting the bit in the VM execution control
register, which is also visible to the host hypervisor.

Virtual IPIs are designed to be transparent to nested VMs
and require no changes to nested VMs. The hardware ICR
used by nested VMs is transparently remapped by the host
hypervisor to the virtual ICR. When a nested VM sends an
IPI by writing the ICR, it causes an exit to the host hypervi-
sor, which confirms that virtual IPIs are enabled via the VM
execution control register. Rather than forwarding the exit to
the respective guest hypervisor, the host hypervisor handles
the exit by emulating the IPI send operation and writing the
hardware ICR directly. Using virtual IPIs, no guest hypervisor
intervention is needed for nested VMs to send IPIs.
To send the IPI, the host hypervisor must know the des-

tination physical CPU that runs the IPI destination virtual
CPU of the nested VM. A hypervisor, however, typically only
knows how virtual CPUs of its own VMs are distributed on
physical CPUs; it does not know the information for nested
VMs. Unlike virtual-passthrough and virtual timers, the host
hypervisor cannot get the nested VM virtual CPU distri-
bution information through existing hardware interfaces
provided to the guest hypervisor.
To address this problem, we add new virtual hardware

interfaces for guest hypervisors, the virtual CPU interrupt
mapping table and the virtual CPU interrupt mapping table
address register (VCIMTAR). This table is a per VM global
structure in memory that provides mappings from virtual
CPUs to the physical CPUs maintained by the guest hyper-
visors. The guest hypervisor can share the mapping informa-
tion with the host hypervisor by programming the table’s
base memory address to the VCIMTAR, which enables the
host hypervisor to find the destination physical CPU run-
ning the IPI destination nested VM’s virtual CPU. On x86,
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Figure 5. Nested VM IPI delivery with virtual IPIs

each table entry has a mapping from virtual CPU number to
the corresponding PI descriptor, which includes a physical
CPU number, to fully leverage posted interrupts for nested
VMs on the receiving side.

Figure 5 shows the same nested VM IPI delivery example
from Figure 4, but using virtual IPIs. The guest OS running
on the L2 VCPU 2 writes to the ICR as before, but the trap
is handled by the L0 hypervisor directly with virtual IPIs.
The L1 hypervisor is not involved. The L0 hypervisor gets
the interrupt number and destination VCPU number from
the ICR. However, it does not know the location of the PI
descriptor for the destination L2 VCPU; it can only access the
PI descriptor of the currently running VCPU on the current
physical CPU, the L2 VCPU 2 in this example. With virtual
IPIs, the L0 hypervisor looks up the correct destination PI
descriptor in the virtual CPU interrupt mapping table using
the destination VCPU number (L2 VCPU 3) as the key. It
then can update the PI descriptor in the same way as the
L1 hypervisor would do, then asks the physical CPU 1 to
raise a posted interrupt. Finally, the physical CPU 1 gets the
original IPI information from the PI descriptor and raises
an interrupt to the L2 VCPU 3 directly. No hypervisor in-
tervention is necessary on the receiving side, and only host
hypervisor intervention is needed on the sending side.

3.4 Virtual Idle
OSes execute idle instructions, such as the HLT (halt) instruc-
tion on x86, to enter CPU low-power mode when possible.
When an idle instruction is excuted in a VM, the hypervi-
sor will typically trap the instruction to retain control of
the physical CPU. The hypervisor then can switch to other
tasks of its own or enter the real low-power mode if it does
not have jobs to run. The hypervisor will return to the VM
later when the VM receives new events to handle. For nested
virtualization, multiple levels of hypervisors are involved in
entering and exiting low-power mode, resulting in increased
interrupt delivery latencies for nested VMs.
We introduce virtual idle, a DVH technique for reducing

the latency of switching to and from low-power mode in

nested VMs. Virtual idle leverages existing architectural sup-
port for configuring whether to trap the idle instruction, but
uses it in a new way. We configure the host hypervisor to
trap the idle instruction as before, but all guest hypervisors
to not trap it. The host hypervisor knows not to forward
the idle instruction trap to the guest hypervisor since it can
access the guest hypervisor’s configuration for nested VMs
through the VMCS as discussed for virtual timers in Sec-
tion 3.2. A nested VM executing the idle instruction will
only trap to the host hypervisor, and the host hypervisor
will return to the nested VM directly on a new event. As a
result, the cost of switching to and from low-power mode
for nested VMs using virtual idle will be similar to that for
non-nested VMs, avoiding guest hypervisor interventions.

Currently available options such as disabling traps [34] in
all hypervisors or using a guest kernel option to poll [51] in-
stead of executing the idle instruction can also reduce latency
similar to virtual idle. The key difference is that those op-
tions simply consume and waste physical CPU cycles when
the nested VM does nothing. Using virtual idle, the host
hypervisor only runs the nested VM when it has jobs to run.
Virtual idle can be used whenever desired by a guest hy-

pervisor. However, instead of enabling virtual idle all the
time when running a nested VM, we enable it only when the
guest hypervisor knows it has no other nested VMs that it
can run. When there is nothing else to run if the running
virtual CPU of the nested VM goes idle, it is best to allow the
host hypervisor to handle the idle instruction since returning
to the guest hypervisor has no benefit. However, when there
are other nested VMs that can be run by the guest hypervi-
sor, it is useful to return to the guest hypervisor to allow it
to schedule another nested VM to execute. Otherwise, the
host hypervisor will schedule the CPU to run other VMs
that it knows about and may not include any other nested
VMs managed by the respective guest hypervisor because it
thinks the idle instruction execution indicates that the guest
hypervisor has no other jobs to run.

3.5 Recursive DVH
DVH can be easily used with additional levels of nested
virtualization. Guest hypervisors that used to use virtual
hardware transparently for its VMs for two levels of virtual-
ization now need to expose the virtual hardware to the next
level guest hypervisors recursively. Only the last level guest
hypervisor uses virtual hardware for its VM transparently
as before. Once guest hypervisors at any level k provide vir-
tual hardware to the next level, the guest hypervisors get
information from the next level guest hypervisors at level
k+1, translate the information valid at level k, and program
the information to virtual hardware provided so that hyper-
visors at level k-1 can access the information in turn. In that
way, the host hypervisor will have all necessary information
to emulate nested VMs. The currently running guest OS in
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a nested VM can always use the virtual hardware without
trapping to guest hypervisors.

For example, recursive virtual-passthrough can be achieved
with a system configuration change. The configuration of the
L0 host hypervisor and the nested VM remain the same as
with two levels of virtualization as discussed in Section 3.1.
The only difference when using more levels of nested vir-
tualization is how the multiple levels of guest hypervisors
are configured. The guest hypervisors are configured in ex-
actly the same way for recursive virtual-passthrough as they
would be for using recursive passthrough. In both cases,
the role of the guest hypervisors is to pass through the I/O
device, regardless of whether the I/O device is physical or
virtual, from the Lk to Lk+1 VM. For that purpose, each guest
hypervisor except the last one provides a virtual IOMMU to
the next level hypervisor so that the latter hypervisor can
pass through the device to the next level VM. The last level
Ln-1 hypervisor, which is equivalent to the guest hypervisor
for two levels of virtualization, only assigns the virtual I/O
device to its VM, the Ln VM. The Ln-1 hypervisor does not
need to provide a virtual IOMMU since the VM does not
need it to use the assigned I/O device.

Although multiple virtual IOMMUs are needed to config-
ure recursive virtual-passthrough, only the virtual IOMMU
provided by the host hypervisor (L1 virtual IOMMU) is used
when the virtual I/O device accesses Ln memory as shown
Figure 6. This is because the L1 virtual IOMMU manages
the shadow page tables that contain the combined mappings
from Ln VM physical addresses to L1 VM physical addresses.
The shadow page tables are built using the same principles
as used for building shadow page tables for (non-)recursive
passthrough.
As another example, recursive virtual timers also can be

achieved in a similar way to recursive virtual-passthrough.
Each guest hypervisor except the last one provides a virtual

timer, including bits in the VMX capability and VM exe-
cution control registers, to the next level hypervisor. The
last level hypervisor, which is equivalent to the guest hy-
pervisor for two levels of virtualization, does not provide a
virtual timer for its VM, but transparently allows it to use
the virtual timer provided to the last level hypervisor. The
last level hypervisor can decide whether to enable or dis-
able the virtual timer feature for its VM, but all other guest
hypervisors will only enable the virtual timer for its nested
VMs if its respective next level hypervisor enables it. For
example, the L1 hypervisor will only enable virtual timers
for an L3 VM if both the L1 and the L2 hypervisors enable
it for their respective VMs. In this way, the enable bits of
all guest hypervisors are combined using an and operation
into the single enable bit that the L1 hypervisor sets for an
Ln VM. The L0 hypervisor will use the virtual timer for the
Ln VM if the L1 hypervisor enabled the virtual timer, which
means all other guest hypervisors also enabled it. If the L1
hypervisor disabled the virtual timer, then the Lk hypervisor
will forward the Ln VM timer access to the Lk+1 hypervisor
recursively, where k starts from 0, until a hypervisor Li finds
a hypervisor Li+1 with the enable bit set, or control reaches to
the Ln-1 hypervisor. For both cases, the respective hypervisor
emulates timer functionality for the Ln VM.

3.6 DVH Migration
Because DVH provides virtual hardware, including virtual
I/O devices, in software, it allows the host hypervisor to en-
capsulate the state of the L1 VM and decouple it from physi-
cal devices to support migration. From the perspective of the
host hypervisor, migrating an L1 VM that contains or does
not contain a nested VM is essentially the same. The nested
VM using DVH does not introduce additional hardware de-
pendencies on the host and is completely encapsulated by
the host hypervisor. For example, a hypervisor supporting
migration of VMs that use virtual I/O devices naturally sup-
ports migration of VMs that use virtual-passthrough.
The only difference from the perspective of the host hy-

pervisor between a VM with and without DVH is that the
former provides more virtual hardware to a VM, such as
a virtual IOMMU and virtual timer, while the latter does
not. Migration using DVH requires that the state associated
with the additional virtual hardware is also migrated. This
is no different than migrating any VM using any other vir-
tual hardware in which the hardware state must be properly
saved and restored. DVH is software only and is not coupled
to any physical device, making it straightforward for the
hypervisor to encapsulate its state for migration.
When migrating a nested VM, without its L1 VM, the

level of virtual hardware support required depends on the
DVH technique. For all of the DVH techniques discussed
other than virtual-passthrough, the level of support needed
is minimal. Virtual timers, virtual IPIs, and virtual idle do not
introduce any additional virtual hardware state that needs
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to be migrated compared to what would be required if the
guest hypervisor itself were emulating that state without
DVH. For virtual IPIs and virtual idle, the techniques are
stateless and there is no additional state that needs to be
saved for nested VM migration. For virtual timers, the guest
hypervisor needs to save the timer value for nested VM mi-
gration, just as it would if it were handling timer emulation
itself without DVH. This simply involves getting the timer
value from the virtual hardware instead of from the guest
hypervisor’s emulated hardware. The timer offset also needs
to be saved, but that is already saved as part of the VM state
stored in VMCS, with or without DVH.
For virtual-passthrough, migrating a nested VM alone

requires some additional support. Migration requires trans-
ferring the I/O device and VM memory state to the desti-
nation. Since copying all memory pages to the destination
can take a while, live migration allows a VM to continue
executing while the pages are copied, then if some mem-
ory pages change, those dirty pages will be re-copied to the
destination. When there are not many dirty pages left to re-
copy, the VM can stopped, the remaining dirty pages can be
copied over, and the VM can be resumed at the destination,
minimizing VM downtime. Migrating a nested VM would be
the responsibility of the guest hypervisor, but the challenge
when using virtual-passthrough is that the guest hypervisor
does not know about what the virtual I/O device is doing be-
cause it does not interpose on I/O operations. As a result, the
guest hypervisor does not know about the I/O device state
that needs to be migrated. Furthermore, since the virtual I/O
device can do DMA to the nested VM memory without the
guest hypervisor’s intervention, the guest hypervisor does
not know which pages are dirtied by the I/O device and need
to be re-copied to the destination.
We address this problem by leveraging DVH to extend

the virtual I/O device provided by the host hypervisor to
capture virtual I/O device state and track memory pages
dirtied by the virtual I/O device. The guest hypervisor can
then simply ask the host hypervisor to provide it with this
information so it can perform the VM migration. All that is
needed is to provide an interface between the guest and host
hypervisors to deliver the required information about the
virtual I/O device and pages dirtied by it, and to modify the
guest hypervisor to use this interface instead of disallowing
migration because (virtual) passthrough is being used. No
modifications are needed to the nested VM.
To provide a standard interface that is hypervisor and

device independent, we leverage the extensibility of the PCI
standard which provides a mechanism known as capabilities.
Capabilities allow new functionality to be added to any PCI
device and be recognized by system software in a standard-
ized way. Example PCI capabilities include PCI Express and
MSI (Message Signaled Interrupts). We define a new PCI de-
vice capability, the migration capability, which adds control

registers to a virtual I/O device that enable the guest hyper-
visor to ask the host hypervisor to capture the device state to
a specified location and log dirty pages to another specified
location. Guest hypervisors that already support PCI devices
can then leverage the migration capability in PCI virtual
I/O devices to support nested VM migration. By leveraging
PCI, any guest hypervisor can interoperate with any host
hypervisor. For example, a Xen guest hypervisor can use the
migration capability of the virtual device implemented in
KVM host hypervisor in a standardized way.

Our approach leverages existing host hypervisor function-
ality. To save device state, we leave it to the host hypervisor
which already has mechanisms to encapsulate its own vir-
tual I/O device state in its own format. The guest hypervisor
simply transfers the device state to the destination and does
not need to interpret it or understand its format. We assume
the same type of host hypervisor is used at the source and
destination so that the encapsulated state can be interpreted
correctly at the destination. To track memory pages dirt-
ied by the I/O device, we use logging functionality that is
already implemented by the host hypervisor since it would
need to track dirty pages from its own virtual I/O devices
for non-nested VM migration. Leveraging existing function-
ality minimizes host hypervisor changes as it only requires
connecting the migration capability interface to existing
functionality. Because logging is done as part of the exist-
ing I/O interposition done by the host hypervisor, it does
not require additional traps to the host hypervisor and has
minimal impact on performance.

4 Evaluation
We implemented the four DVH mechanisms in KVM and
evaluated their performance. Experiments used x86 server
hardware in CloudLab [44], each with two Intel Xeon Silver
4114 10-core 2.2 GHz CPUs (hyperthreading disabled), 192
GB ECC DDR4-2666 RAM, an Intel DC S3500 480 GB 6G
SATA SSD, and a dual-port Intel X520-DA2 10Gb NIC (PCIe
v3.0, 8 lanes). The servers include VMCS Shadowing [27]
for nested virtualization, APICv for virtual interrupt support
and posted interrupts from CPUs, and VT-d IOMMU support
for direct device assignment with posted interrupt support
from devices.
To provide comparable measurements, we kept the soft-

ware environments the same as much as possible. All hosts
and VMs used Ubuntu 14.04 with the same Linux 4.18 kernel
and software configuration, unless otherwise indicated. We
fixed a KVM hypervisor bug related to using virtualization
support for accessing segment registers, which has since
been incorporated into later versions of KVM [10]; all our
measurements included this fix for a fair comparison. For
the host and guest hypervisors, we used KVM with QEMU
3.1.0. When using virtual I/O devices with KVM, with or
without virtual-passthrough, we used the standard virtio
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Name Description
Hypercall Switch from VM to hypervisor and immediately

back to VM without doing any work in the
hypervisor.

DevNotify Device notification via MMIO write from VM virtio
device driver to virtual I/O device.

ProgramTimer Program LAPIC timer in TSC-Deadline mode.
SendIPI Send IPI to CPU that is idle which needs to wakeup

and switch to running destination VM vCPU to
receive IPI.

Table 1. Virtualization microbenchmarks

network device with vhost-net and the cache=none setting
for virtual block storage devices [25, 31, 49]. We also provide
measurements using Xen 4.10.1 as an x86 guest hypervisor.
We used four different configurations for our measure-

ments: (1) native: running natively on Linux with 4 cores and
12 GB RAM, (2) VM: running in a VM with 4 cores and 12 GB
RAM on a hypervisor with 6 cores and 24 GB RAM, (3) nested
VM: running in a L2 VM with 4 cores and 12 GB RAM on an
L1 hypervisor with 6 cores with 24 GB RAM on an L0 hyper-
visor with 8 cores and 36 GB RAM, (4) L3 VM: running in an
L3 VMwith 4 cores and 12 GB RAM on an L2 hypervisor with
6 cores with 24 GB RAM on an L1 hypervisor with 8 cores
and 36 GB RAM on an L0 hypervisor with 10 cores and 48 GB
RAM. Two cores and 12 GB RAM were added for the hyper-
visor at each virtualization level similar to previous work [36,
52, 54] on nested virtualization using multicore processors.
We pinned each virtual CPU to a specific physical CPU fol-
lowing best measurement practices [14, 36, 48, 55]. For bench-
marks that involve clients interacting with the server, the
server ran on the configuration being measured while the
clients ran on a separate dedicated machine, ensuring that
clients were never saturated during our experiments. Clients
ran natively on Linux with the same kernel version as the
server and were configured to use the full hardware available.
We evaluated performance using microbenchmarks and

widely-used application workloads, as listed in Table 1 and
Table 2, respectively. Other than DVH, no changes were re-
quired to the hypervisors except the KVM bugfix, which was
used for all configurations. DVH required changes in the
hypervisors to provide and use the virtual hardware. We also
implemented posted interrupt support in the virtual IOMMU
for DVH measurements, which is missing in QEMU, to fully
leverage the benefits of the DVH design.

Table 3 shows performance measurements from running
the microbenchmarks in a VM, nested VM, nested VM using
DVH, L3 VM, and L3 VM using DVH. Additional virtualiza-
tion levels are not supported by KVM [29]. Measurements
were run using paravirtual I/O, though only DevNotify uses
the I/O device. The measurements show more than an or-
der of magnitude increase in cost when run in a nested VM
versus a VM. Hypercall is much more expensive in a nested
VM than in a VM as it takes much longer to exit to the guest

Name Description
Netperf netperf v2.6.0 [28] server running with default

parameters on the client in three modes: TCP_RR,
TCP_STREAM, and TCP_MAERTS, measuring latency
and throughput, respectively.

Apache Apache v2.4.7 Web server running ApacheBench [50]
v2.3 on the remote client, measuring requests handled
per second serving the 41 KB file of the GCC 4.4
manual using 10 concurrent requests.

Memcached memcached v1.4.14 using the memtier benchmark
v1.2.3 with default parameters for 30 seconds.

MySQL MySQL v14.14 (distrib 5.5.41) running SysBench v.0.4.12
using the default configuration with 200 parallel
transactions.

Hackbench hackbench [46] using Unix domain sockets and 100
process groups running with 500 loops.
Table 2. Application benchmarks

hypervisor from a nested VM than to exit from a VM to its
hypervisor without nested virtualization. As expected, DVH
does not improve nested VM performance for Hypercall as
it always requires exiting to the guest hypervisor.

DVH substantially improves nested VM performance for
the other microbenchmarks as each of them exercises one of
the DVH mechanisms to avoid exits to the guest hypervisor.
Compared to vanilla KVM running the nested VM, DVH
provides more than 3 times better performance on DevNo-
tify due to virtual-passthrough, 13 times better performance
on ProgramTimer due to virtual timers, and 8 times better
performance on SendIPI due to virtual IPI and virtual idle.
SendIPI measures the total time to send and receive an IPI
when the VM is idle on the destination CPU.

Although DVH performs much better than vanilla KVM in
all cases, it incurs noticably more overhead running a nested
VM than running a VM for DevNotify. The extra cost is a re-
sult of the host hypervisor needing towalk the extended page
table (EPT) of the VM to check if a fault occurred because
the mapping does not exist at the faulting address in the EPT.
Once the host hypervisor confirms that the mapping is valid,
it handles the fault directly. Note that no data is transferred
in this microbenchmark and more realistic I/O device usage
that accesses data would have much less overhead for run-
ning a nested VMwith DVH compared to just running a VM.

L3 VMmeasurements showmore than a 200 times increase
in cost compared to VM due to excessive exit multiplication
with further virtualization levels. DVH again substantially
improves L3 VM performance for all microbenchmarks other
than Hypercall, more than 150 times on average. More impor-
tantly, using DVH resulted in similar performance for both
L3 and L2 VMs, an expected outcome since DVH removes
guest hypervisor interventions. Our results show how DVH
significantly improves nested virtualization performance. By
resolving the exit multiplication problem, DVH achieves per-
formance close to non-nested virtualization performance
regardless of nested virtualization level.
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VM nested VM nested VM
+ DVH L3 VM L3 VM

+ DVH
Hypercall 1,575 37,733 38,743 857,578 929,724
DevNotify 4,984 48,390 13,815 1,008,935 15,150
ProgramTimer 2,005 43,359 3,247 1,033,946 3,304
SendIPI 3,273 39,456 5,116 787,971 5,228
Table 3.Microbenchmark performance in CPU cycles

Figure 7 shows performance measurements from running
the application workloads in six different VM configurations.
We considered all possible network I/O configurations. For
VM, we measured both paravirtual I/O and passthrough.
For nested VM, we measured paravirtual I/O, passthrough,
DVH, and DVH with only the virtual-passthrough mecha-
nism enabled, denoted as DVH-VP, to provide a conservative
comparison against passthrough. DVH-VP did not require
any hypervisor changes to support virtual hardware; it did
not include posted interrupt support in the virtual IOMMU.
Since we are more interested in overhead than absolute per-
formance, VM and nested VM performance are normalized
relative to native execution, with lower meaning less over-
head. The native execution results were 45,578 trans/s for
Netperf RR, 9,413 Mb/s for Netperf STREAM, 9,414 Mb/s for
Netperf MAERTS, 15,469 trans/s for Apache, 354,132 trans/s
for Memcached, 4.45 s for MySQL, and 10.36 s for Hackbench.
For the VM case, both paravirtual I/O and passthrough

provide mostly similar performance, with passthrough hav-
ing better performance for both Netperf RR and Apache. The
virtual I/O device model overall provides sufficient perfor-
mance for the VM case with passthrough providing only
marginal gains for most of the application workloads. Since
Hackbench does not use I/O, it shows no performance dif-
ference between different I/O models.
For the nested VM case, performance differences among

the different VM configurations are substantial. Only DVH is
able to provide nested virtualization performance almost as
good as the VM case for all application workloads. DVH per-
formance can be more than 3 times better than just using par-
avirtual I/O, and more than 2 times better than passthrough.
While paravirtual I/O performsmuchworse than passthrough
for most application workloads, more than 3 times worse
than the VM case for Apache, Memcached, Netperf RR, and
Netperf MAERTS, DVH-VP alone delivers nested VM per-
formance comparable to passthrough for most application
workloads. Performance gains using DVH-VP instead of the
virtual I/O device model are substantial, more than doubling
performance for Apache and almost tripling performance
for Memcached. Note that the virtual I/O device emulation
done by the host hypervisor using DVH-VP is almost iden-
tical to that using virtual I/O model; it relays data between
the physical I/O device and (nested) VM address space. The
performance gain using DVH-VP is a result of removing the
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Figure 7. Application performance
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Figure 8. Application performance breakdown

guest hypervisor’s intervention on physical CPUs that run
the nested VM.
Figure 8 provides a finer granularity breakdown of the

nested virtualization performance in Figure 7 to show how
incrementally applying each DVH technique affects perfor-
mance. Starting with DVH-VP, we show how performance
changes by adding posted interrupt support in the virtual
IOMMU, virtual IPIs, virtual timers and virtual idle, respec-
tively, the latter including all DVH techniques. Different
DVH techniques improve performance to varying degrees
for different application workloads. Virtual IPIs most im-
prove performance for Apache, MySQL, and Hackbench. Vir-
tual timers improve performance most for Netperf RR, and
help some with Apache and MySQL. Virtual idle improves
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Figure 9. Application performance in L3 VM

performance for Netperf RR as the workload often goes idle.
The different DVH techniques also have performance inter-
actions. For example, for Memcached, each of the individual
DVH techniques except virtual idle improves performance
significantly when used by itself, but once one technique is
used, the other techniques do not help much further because
there is not much overhead left. On the other hand, virtual
idle helps significantly with Netperf RR, but only when used
in combination with the other DVH techniques, not by itself.

Figure 9 shows measurements using three levels of virtu-
alization. Only DVH is able to provide nested virtualization
performance almost as good as the VM case for all applica-
tion workloads. DVH performance is up to two orders of
magnitude better than just using paravirtual I/O, and can
be more than 30 times better than passthrough. In contrast,
these measurements show that adding an additional level
of virtualization makes paravirtual I/O performance practi-
cally unusable, showing more than two orders of magnitude
overhead for multiple workloads such as Memcached and
Apache, and much worse than the passthrough model. DVH-
VP alone again continues to offer similar performance as
passthrough, though it still performs multiple times worse
than native execution and not as well as DVH.

Figure 10 shows the same performance measurements as
Figure 7, but using Xen instead of KVM. Because nested
virtualization support does not work properly in recent
Xen versions including the version we used [56], we ran
Xen only as the guest hypervisor for the nested VM cases
while using KVM as the host hypervisor. Since most DVH
techniques typically also require the guest hypervisor to be
aware of these virtual hardware mechanisms to use them,
we only performed DVH-VP measurements with Xen as
virtual-passthrough can be used without any guest hypervi-
sor modifications. Just like the KVM guest hypervisor case,
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Figure 10. Application performance, Xen on KVM

the performance differences among the different I/O config-
urations is substantial for the nested VM case. Paravirtual
I/O performs significantly worse than passthrough for the
nested VM case for all application workloads. DVH-VP is
able to provide performance similar to passthrough for all
workloads and provides substantial gains over the virtual I/O
device model, up to an order of magnitude for Memcached.
DVH-VP also significantly improved performance on ARM
since I/O models are platform-agnostic, but we omit these
results due to space constraints.
We also measured the time to migrate VMs and nested

VMs running the application workloads by doing live migra-
tion between two identical x86 servers on the same subnet.
Migration does not work using passthrough, so we compared
using paravirtual I/O versus DVH. The default transfer band-
width configuration of 268 Mbps was used for QEMU for
migration to avoid interference with the running workload.
Migration times for nested VMs using DVH versus paravir-
tual I/O were roughly the same, and the times were also
roughly the same as migrating VMs. Migrating nested VMs
along with their guest hypervisors using DVH was roughly
twice as expensive as migrating only the nested VM due to
the extra memory state that must transferred. Further details
are omitted due to space constraints.

5 Related Work
Modern architectures such as x86 and ARMhave been adding
more powerful virtualization extensions to enhance VM and
nested VM performance [2, 4, 13, 15–17, 26, 27, 33, 36]. Hard-
ware extensions such as APICv on x86 [26] and VGIC on
ARM [2, 4] provide additional hardware state that can be
dedicated for use by VMs and nested VMs. DVH provides
additional virtual hardware, but as a software solution that
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does not require additional hardware. DVH can be deployed
in addition to and in the absence of hardware extensions
to improve nested virtualization performance. It can also
be used to evaluate future hardware extensions. Hardware
extensions specific to nested virtualization such as VMCS
shadowing on x86 [27] and NEVE on ARM [36] reduce the
cost of guest hypervisor execution, but they do not avoid
guest hypervisor interventions for nested VMs. In contrast,
DVH removes multiple levels of guest hypervisor interven-
tions and replaces them with much less expensive host hy-
pervisor interventions. DVH and architectural support for
nested virtualization are complementary; DVH works on top
of the hardware extensions as shown in Section 4.
Denali [53] proposed a different virtual interface from

the underlying hardware to VMs, provided by the software
running directly on the hardware to improve virtualization
scalability. Fluke [22] provided a different interface to VMs
to support OS extensibility. These approaches do not support
legacy OSes and hypervisors. In contrast, DVH shows how
virtual hardware can be provided directly through multiple
layers of hypervisors to improve nested virtualization per-
formance, in a way that is transparent and does not require
changes to the nested VMs.
Turtles [6] mentions that nested VM I/O support can be

done in nine possible combinations of emulation, paravirtual-
ization and direct device assignment by picking any approach
for I/O virtualization between host hypervisor and VM, and
between guest hypervisor and nested VM. They evaluated
the combinations they considered interesting with device
passthrough performing the best, but did not recognize the
idea or benefits of directly assigning virtual devices to a
nested VM, as we introduce with virtual-passthrough. We
show for the first time the power of this previously dismissed
approach, its ability to provide performance comparable to
direct physical device assignment for many I/O workloads
without requiring additional hardware support, and its abil-
ity to provide I/O interposition benefits such as migration.
Dichotomy [54] proposed migrating nested VMs from

the guest hypervisor to the host hypervisor to reduce the
overhead of nested virtualization, then migrating them back
when guest hypervisor intervention is required. While this
approach providesmarginal performance gain, virtual I/Omi-
gration across different hypervisorswould require significant
implementation or even not be possible. Virtual-passthrough
provides virtual I/O devices in the host hypervisor to nested
VMs directly without migration, enabling it the work regard-
less of virtual I/O device types guest hypervisors support.
DID [51] proposed an x86 mechanism to allow VMs to

program physical timers without trapping for single level
virtualization by restricting hypervisors to use a timer on
a designated core. This mechanism is based on their design
that all interrupts are delivered to the VM natively, but does
not fully leverage posted-interrupt hardware support com-
monly used by x86 hypervisors. DVH, in contrast, takes a

different approach to provide an additional timer for VMs
and is designed to work on hypervisors leveraging modern
architectural support for virtualization.
Various efforts have tried to compensate for the lack of

I/O interposition with passthrough to support live migration.
Software-only approaches [30, 42, 58, 59] either do not sup-
port unmodified guest OSes or support only specific guest
OSes or may lose data due to incomplete tracking of I/O
operations. Hardware approaches such as ReNIC [18] pro-
pose extending SR-IOV device functionality with a custom
interface for device state migration and extending IOMMU
functionality for dirty page logging.
Various approaches leverage virtual I/O devices instead

of physical I/O devices to balance performance and I/O in-
terposition, such as vDPA [35] and DPDK using virtual I/O
devices [19, 20]. Unlike DVH, these approaches do not pro-
vide good performance for nested virtualization since the
virtual I/O devices that nested VMs use still require expen-
sive guest hypervisor interventions.

6 Conclusions
We introduced DVH, a new approach for directly providing
virtual hardware to nested virtual machines without the in-
tervention of multiple levels of hypervisors. We introduce
four DVH mechanisms, virtual-passthrough to directly as-
sign virtual I/O devices to nested virtual machines, virtual
timers to transparently remap timers used by nested virtual
machines to virtual timers provided by the host hypervisor,
virtual inter-processor interrupts that can be sent and re-
ceived directly from one nested virtual machine to another,
and virtual idle that enables nested VMs to switch to and
from low-power mode without guest hypervisor interven-
tions. DVH provides virtual hardware for these mechanisms
that mimics the underlying hardware and in some cases adds
new enhancements that leverage the flexibility of software
without the need for matching physical hardware support.
We have implemented DVH in the Linux KVM hypervisor
and show that it can provide more than an order of magni-
tude better performance than current KVM nested virtual-
ization on real application workloads, in many cases making
nested virtualization overhead similar to that of non-nested
virtualization. We also show that DVH can provide better
performance than device passthrough while at the same time
enabling migration of nested VMs, thereby providing a com-
bination of both good performance and key virtualization
features not possible with device passthrough.
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A Artifact Appendix
A.1 Abstract
The artifact contains the source code for the DVH implemen-
tation in KVM/QEMU on the x86 architecture, a VM disk
image, and instructions to measure application benchmark
performance. Users can reproduce the results in Figure 7 and
Figure 9.

A.2 Artifact check-list (meta-information)
• Program: Linux kernel 4.18.0. QEMU 3.1.0.
• Compilation: GCC 4.8.4.
• Run-time environment: Ubuntu 14.04.
• Hardware: Two Intel x86 machines connected by a network.
• Experiments: Application benchmarks: Netperf, Apache, Mem-
cached, MySQL, and Hackbench.

• Howmuch disk space required (approximately)?: 50 GB to
store a VM disk image file.

• How much time is needed to prepare workflow (approxi-
mately)?: 2 hours.

• How much time is needed to complete experiments (ap-
proximately)?: 10+ hours.

• Publicly available?: Yes.
• Code licenses (if publicly available)?: GNU GPL v2.
• Workflow framework used?: No, but scripts are provided to
automate the measurements.

• Archived (provideDOI)?: https://doi.org/10.5281/zenodo.3555508

A.3 Description
A.3.1 How delivered
The artifact, which is zipped into two files, is available on Zendoo:
https://doi.org/10.5281/zenodo.3555508. The source code, scripts,
and instructions are zipped into dvh-asplos-ae.tar.gz. A VM
image is zipped into ae-guest0.img.bz2. While we will focus on
how to download and use the artifact from Zendoo, the source
code, scripts, and instructions are also available on GitHub: https:
//github.com/columbia/dvh-asplos-ae.

A.3.2 Hardware dependencies
The DVH implementation works on Intel x86 CPUs with support
for CPU posted interrupts. Passthrough experiments additionally
require CPUs to have Intel VT-d support and the network card to
have SR-IOV support.

A.4 Installation
Users need to install software on two Intel x86 machines, a server
used for running VMs and a client which imposes workloads on
the server machine. Both the server and client should first have
Ubuntu 14.04 installed.

Users need to download the source code and scripts zipped into
the dvh-asplos-ae.tar.gz from Zendoo to the server and the
client. While the source code and scripts are also used in the VM,
they have already been installed in the provided VM image file un-
der the root directory for each virtualization level. The following is
the directory structure of the source code, scripts, and instructions:
• README.md This file has detailed instructions to conduct ex-
periments.

• scripts This directory has scripts to run experiments.

• linux This directory is a git repository having multiple branches
of Linux kernel used in this paper.

• qemu This directory is a git repository having multiple branches
of QEMU used in this paper.
After downloading the source code and scripts, users need to

install necessary packages and scripts on the server and the client,
which will help users to run VMs and scripts introduced in the later
sections. The necessary packages and scripts can be installed using
the following commands:

# cd scripts
# ./install_scripts.sh
# ./install_packages.sh

To conduct experiments, users first need to set up a custom Linux
kernel on the server and client. Compiling and installing the Linux
kernel is done using the GNU make utility on a Linux machine in a
standard way. The client kernel needs to be installed and configured
only once with the baseline kernel version, v4.18-base branch.
The server needs to have different kernel versions installed based on
the experiment configuration. In addition, QEMU also needs to be
compiled using GNU make and installed on the server to run VMs.

Users need to have a VM image to run a VM. While users can
create their own VM images to run experiments, we provide a
pre-configured VM image having another VM image inside which
also has another VM image inside to support up to three levels of
virtualization. Ubuntu 14.04 is already installed in each VM at each
virtualization level, which we can refer to as the L1, L2, and L3 VMs.
To obtain the VM image, download the file ae-guest0.img.bz2
from Zendoo to the server and unzip it using the following com-
mand, which requires 50 GB of disk space on the server:

# pbzip2 -dk ae-guest0.img.bz2

Once the server is set up with the Linux kernel and QEMU, users
can run the run-vm.py script on the server machine to run VMs
so they can be set up to run experiments. The run-vm.py script
provides three options. The first one is to set up the path to a VM
image. The second option is to set up the VM configuration. Avail-
able configurations are base, which is virtual I/O, passthrough,
dvh-vp, and dvh. For setting up the VMs, this configuration option
should be set to base, which is the default. The last option is to set
a virtualization level from 1 to 3, corresponding to L1 VM, L2 VM,
and L3 VM, respectively. The script will automatically run the VMs
at the specified level on entering 0. The following example shows
how to run the script with a VM image path set to /vm/v4.18.img,
a VM configuration of base, and a virtualization level of 2, which
will run the L2 VM as well as its required L1 VM:

# cd scripts
# ./run-vm.py
--------- VM configurations -------
1. [/vm/v4.18.img] VM Image path
2. [base] VM Configuration
3. [2] Virtualization Level
Enter number to update configuration. Enter 0 to start a VM:

To install a Linux kernel version and QEMU on the server and
at each virtualization level, start installing them at the lowest level,
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the server, and at the subsequent higher levels in order. For ex-
ample, to setup an L2 DVH configuration, compile and install the
Linux kernel on the server with the v4.18-dvh-L0-asplos branch,
configure kernel parameters to use this kernel, and compile QEMU
with the v3.1.0-dvh branch on the server. Then reboot the server
to use the configured kernel. Next, run run-vm.py to run the L1
VM. Since the provided VM image already has the necessary ker-
nels installed, it is only necessary to configure kernel parameters
to use the kernel with the v4.18-dvh-basic-asplos branch, com-
pile QEMU with the v3.1.0-base branch, and terminate the L1
VM. Finally, run run-vm.py to run the L2 VM. If the correct kernel
version is not being used in the L2 VM, configure kernel parameters,
terminate the L2 and L1 VM, and run run-vm.py again to boot the
L2 VM with the correct kernel version. QEMU is not necessary
in the last level VM. Kernel and QEMU versions/configurations
for each experiment at each virtualzation level as well as detailed
instructions to compile and install the Linux kernel and QEMU can
be found in the README.md.

A.5 Experiment workflow
We compare application performance on a bare-metal server ma-
chine versus VMs running on the server machine at different vir-
tualization levels from 1 to 3. We measure performance of VMs at
each level using different configurations - virtual I/O, passthrough
I/O, DVH-VP, and DVH. Users run the run-vm.py script on the
server machine to run VMs, using the second option of the script
to select the I/O configuration, as discussed above. For example, to
use DVH, the second option would be set to dvh. Users do not need
to run the script for the native execution measurements.

Once a bare-metal machine or VM is ready on the server, users
run the run-benchmarks.sh script on the client to start exper-
iments. The script takes a command-line option to indicate the
virtualization level to use at the server, L0, which is bare-metal, L1,
L2, or L3. When running the script, the user may choose to run
all application benchmarks or a subset of them selectively. Once a
benchmark is selected, the script will list the benchmark with a * on
the left. Enter 0 to finish selecting benchmarks. The script will also
ask the user to specify an experiment name, which the script will
use as the directory name in which to store the benchmark results
on the client. Finally, the script will ask the user for the number of
runs to perform. For each run, the script will run each application
benchmark many times, 50 times for most of applications but less
times for time-consuming applications. Results for each run will be
stored in a numbered subdirectory. We recommend running at least
three runs to ensure the reliability of the results. Once the user sets
all options, the script will automatically install the benchmarks on
both the server (including VMs) and the client, if they are not yet
installed, then run the benchmarks. For example, to run the Netperf
STREAM benchmark in a running L2 VM on the server using 3
runs and store the results in a directory L2-dvh on the client, the
script would be run as follows:

# cd scripts
# ./run-benchmarks.sh L2
[0] ==== Start Test =====
[1] All
[2] Hackbench
[3] mysql
[4] netperf-rr

[5] netperf-stream
[6] netperf-maerts
[7] apache
[8] memcached
Type test number(Enter 0 to start tests): 5

[0] ==== Start Test =====
[1] All
[2] Hackbench
[3] mysql
[4] netperf-rr
*[5] netperf-stream
[6] netperf-maerts
[7] apache
[8] memcached
Type test number(Enter 0 to start tests): 0
Enter test name: L2-dvh
How many times to repeat? 3

A.6 Evaluation and expected result
Once all selected benchmarks finished running on the client, the
results can be obtained by running the results.py script on the
client in the scripts directory with a command-line argument
that is the test name entered for the run-benchmarks.sh script.
The script will show the results in a CSV-like format, where each
line of results will have one number for each run, and each column
represents one complete run. For example, the following shows how
to run results.py to get the results from the Netperf STREAM
example discussed above:
# ./results.py L2-dvh
netperf-stream
----------netperf-stream------
9413.81,9413.92,9412.64
9414.22,9413.71,9413.46
... (47 more lines)
9414.13,9414.27,9414.41
----------------------------

We determine the performance of each application by choosing
the best performance number among the average numbers for each
run. The best number is the one that has the highest value for
benchmarks measuring transaction rate or data transfer rate such
as Netperf, Apache, and Memcached. For benchmarks measuring
the elapsed time for a given amount of work such as MySQL and
Hackbench, the best number is the one that has the lowest value.
For the Netperf STREAM example above, we calculate the average
values for three different runs respectively, and choose the highest
value among the three average numbers.

We evaluate VM performance by comparing against the native
execution of the same workload to quantify performance overhead.
For benchmarks choosing the highest value as the best number, the
overhead is calculated by dividing the VM performance number by
the native execution performance number. For benchmarks choos-
ing the lowest value as the best number, the overhead is calculated
the other way around, by dividing the native execution performance
number by the VM performance number. The expected overheads
are shown in Figure 7 and Figure 9.
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