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Abstract
We present DORA, a mutable record-replay system which allows a
recorded execution of an application to be replayed with a modified
version of the application. This feature, not available in previous
record-replay systems, enables powerful new functionality. In par-
ticular, DORA can help reproduce, diagnose, and fix software bugs
by replaying a version of a recorded application that is recompiled
with debugging information, reconfigured to produce verbose log
output, modified to include additional print statements, or patched
to fix a bug.

DORA uses lightweight operating system mechanisms to record
an application execution by capturing nondeterministic events to a
log without imposing unnecessary timing and ordering constraints.
It replays the log using a modified version of the application even
in the presence of added, deleted, or modified operations that do
not match events in the log. DORA searches for a replay that
minimizes differences between the log and the replayed execution
of the modified program. If there are no modifications, DORA
provides deterministic replay of the unmodified program.

We have implemented a Linux prototype which provides trans-
parent mutable replay without recompiling or relinking applica-
tions. We show that DORA is useful for reproducing, diagnos-
ing, and fixing software bugs in real-world applications, includ-
ing Apache and MySQL. Our results show that DORA (1) captures
bugs and replays them with applications modified or reconfigured
to produce additional debugging output for root cause diagnosis,
(2) captures exploits and replays them with patched applications to
validate that the patches successfully eliminate vulnerabilities, (3)
records production workloads and replays them with patched appli-
cations to validate patches with realistic workloads, and (4) main-
tains low recording overhead on commodity multicore hardware,
making it suitable for production systems.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging; D.2.4 [Software Engineering]: Soft-
ware/Program Verification; D.2.7 [Software Engineering]: Distri-
bution, Maintenance, and Enhancement; D.4.5 [Operating Sys-
tems]: Reliability

Keywords Deterministic Replay, Mutable Replay, Multicore, De-
bugging
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1. Introduction
As applications grow in complexity, software bugs have become in-
creasingly common and more difficult to reproduce, diagnose, and
fix. Aggressive release schedules exacerbate the problem, resulting
in frail software that requires patches to fix problems that occur
in the field. Resolving a bug typically starts with reproducing it in
a controlled environment. Because the common approach of con-
veying a bug report is often inadequate for tricky, nondeterministic
bugs, record-replay has been developed to capture application bugs
as they occur and deterministically replay the bug at a later time,
removing the burden of repeated testing to reproduce the bug.

Despite an abundance of research on using record-replay sys-
tems for debugging [2, 3, 7, 11, 18, 19, 21, 22, 26, 27], most works
have focused on bug reproducibility and have had limited or no sup-
port for diagnosing and fixing bugs. Debugging almost always re-
quires modifying the program, whether by adding print statements,
testing if a change fixes the problem, or some other method. How-
ever, previous record-replay systems do not allow the recorded ex-
ecution to be replayed with any modifications to the application,
with a couple exceptions. A handful of systems do allow some new
code to be run in the middle of a recording, but they do not support
changes to the application state [7, 12], which limits the utility of
these systems for debugging and validating changes.

To address this problem, we introduce DORA, a mutable record-
replay system which allows a recorded execution of an application
to be replayed with a modified version of the application. Mutable
record-replay provides a number of benefits for reproducing, di-
agnosing, and fixing software bugs. For instance, mutable record-
replay can replay a version of the recorded application that is re-
compiled with debugging information, reconfigured to produce ver-
bose log output, or modified to include additional code instrumen-
tation such as print statements.

Mutable record-replay can also replay a recorded application
execution of a production workload using a patched version of the
application. This is useful for both application developers and sys-
tem administrators. An application developer can use a recording of
a bug when developing a fix. Replaying the recording on a modified
application speeds up debugging and provides a novel way of vali-
dating bug fixes for nondeterminstic bugs, which can otherwise be
time consuming and difficult. For example, a developer who writes
a patch can test it by taking a recorded execution of the exploit on
the original application and replaying it using the patched applica-
tion to quickly verify that the patch closes the vulnerability instead
of painstakingly regenerating the exploit for each attempted fix of
the problem.

System administrators often worry that applying patches will
break their applications. Mutable replay allows administrators to
independently test patches on production workloads. An adminis-
trator can record the unpatched application in production, apply
the patch to an offline version of the application, and then replay
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the recorded execution using the patched application. If the replay
succeeds, the administrator will be more confident that the changes
will not introduce regressions.

Mutable replay complements traditional quality assurance test-
ing. Quality assurance provides broad coverage but fails to handle
many corner cases, which is why bugs arise in production in the first
place. In contrast, mutable replay isolates actual bugs that occur in
production. These bugs can be timing and configuration dependent,
so some surface very rarely. This coverage is often not possible with
traditional testing due to nondeterministic program behavior. Fur-
thermore, mutable replay provides fast turnaround time, enabling a
bug to be replayed quickly and directly tested against application
changes that attempt to fix the problem. This not only speeds up de-
bugging, but also provides a way to validate bug fixes for nondeter-
minstic bugs, which can otherwise be much more time consuming
and difficult.

DORA consists of three components: (1) a recorder that records
application execution to a log, (2) a replayer that can replay a mod-
ified version of the application using the log, and (3) an explorer
that uses the replayer to find the execution of the modified program
that best corresponds to the log file. The recorder and replayer build
upon our previous deterministic record-replay engine, Scribe [16].

The recorder operates primarily at the interface between appli-
cations and the operating system (OS) to transparently record an
application’s nondeterministic interactions. It avoids imposing un-
necessary timing and ordering constraints that would hinder muta-
ble replay with a modified application. To aid mutable replay, the
recorder also logs deterministic interactions to detect and resolve
any differences between the recorded application execution and the
replay of a modified version of the application.

The replayer replays a previously recorded execution using a
modified version of the application, matching events from the orig-
inal log with the actions of the modified program. If the applica-
tion used for replay is the same as the one recorded, the replayer
provides deterministic replay of the unmodified application. How-
ever, if the replayed application’s behavior diverges from the orig-
inal’s, the replayer gathers information for the explorer about the
new code path the program was trying to execute and waits for in-
structions on how to proceed. Because it operates at the OS level
like the recorder, the replayer has access to sufficient OS semantics
to understand why a replay diverges from the original execution
and can leverage these semantics to help the explorer.

The explorer evaluates several possible execution paths to find
a successful mutable replay. It performs a best-first search for an
execution of the modified program that is as close to the original
execution as possible according to some cost function d. It begins
by replaying a recorded execution on a modified program. When
the replay diverges from the original execution, the explorer tries
to determine why. For example, suppose the modified program
made an unexpected printf() call. This could be a new call to
produce debugging information, or it could simply occur earlier
than expected because code was deleted. The explorer chooses the
most promising possibility and communicates its decision to the
replayer. This process repeats until a successful execution is found.

DORA is designed to handle an wide range of real-world pro-
grams, including multi-threaded applications. It can support a
broad range of useful application changes, but cannot support arbi-
trary changes; major changes to the process layout or shared mem-
ory layout are not supported. Despite this limitation, DORA is use-
ful in a wide range of real-world use cases for testing, debugging,
and validating application changes. In fact, we even found a previ-
ously unknown bug in Apache using DORA [1]. DORA’s usefulness
in practice makes sense given that bug fixes tend to be relatively
small and rarely change core application semantics [13, 29].

We have implemented a DORA Linux prototype that runs on
commodity multicore hardware without changing, relinking, or re-
compiling applications or libraries. Our experimental results with
over thirty different application changes show that DORA can (1)
record unmodified real-world multi-threaded applications with less
than 10% overhead on multicore hardware, (2) replay applications
that have been reconfigured to produce verbose debugging output
or modified with added debugging instrumentation, (3) replay real
exploits on patched applications to verify that the patches close
these vulnerabilities, and (4) replay benchmark workloads to val-
idate application patches and version upgrades despite changes in
thousands of lines of code.

We present the design, implementation, and evaluation of the
DORA mutable replay system. Section 2 provides a definition of
mutable replay. Section 3 describes the DORA recorder. Section 4
describes the DORA replayer. Section 5 describes the DORA ex-
plorer and presents an example illustrating the use of the system.
Section 6 presents some of the guarantees that can be made about
the system’s behavior. Section 7 discusses limitations of the current
system. Section 8 presents experimental results. Section 9 discusses
related work. Finally, we present some concluding remarks and di-
rections for future work.

2. Mutable Replay Concept
Since mutable replay is a previously undefined concept, we begin
by presenting a definition. Let e be the recorded execution of some
program P . Let E′ be the set of possible executions of P ′, a
modified version of P . A mutable replay of e on P ′ will then be an
execution e′ in E′ such that the differences between e and e′ are a
result of the differences between P and P ′.

The difference between two programs includes not only differ-
ences in their executables, but can also include changes in input
and environment, such as environment variables, the file system,
and host-related information. Note that there is not always a clear
mapping from input in the original program to input in the modified
program. For example, the original program could read more bytes
from stdin than the modified program.

Since some executions in E′ are intuitively preferable to others,
we introduce the concept of a d-optimal mutable replay, an execu-
tion in E′ that is optimal according to a cost function d. The cost
function measures the difference between the original execution
and the mutable replay. The value returned by d reflects the minimal
cost of transforming the execution e1 into a candidate execution e2.
A lower score is better, scores can be negative, and the score must
be the lowest when e1 is identical to e2. A d-optimal mutable replay
ed of an execution e on P ′ satisfies d(e, ed) = mine′∈E′d(e, e′).
There is always at least one d-optimal mutable replay for a given
execution e and a program P ′.

Finding the d-optimal mutable replay is undecidable in the
general case. To show this, we first observe that finding the d-
optimal mutable replay requires running P ′ because predicting the
executions of a program is undecidable. Suppose P ′ has an added
infinite loop at its beginning. Then, when running P ′, the replayer
will loop infinitely since detecting an infinite loop is undecidable.
Thus, finding the d-optimal replay is undecidable.

Even in the subset of cases in which finding a d-optimal mutable
replay is decidable, it is still NP-hard with respect to the number
of events in the log. Consider a program P ′ which only adds a
read() system call of n bytes. There are O(2n) possible results of
this call. In addition, arbitrary signals could be delivered between
any two instructions. If the program is threaded, they are many
possible thread interleavings. Since differences in signal delivery
and thread interleaving could theoretically cause radically different
behavior, and since determining the future execution of a program
is undecidable, a mutable replayer must consider every possibility,
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int main() {
printf("%d\n", time(NULL));
return 0;

}

Figure 1. Original program

int main() {
FILE *out = fopen("output", "w");
fprintf(out, "%d\n", time(NULL));
return 0;

}

Figure 2. Modified program

which is infeasible. Thus, no mutable replay system can efficiently
find a d-optimal mutable replay in all cases.

Fortunately, however, many useful changes to programs are
modest in size and scope. In particular, bug fixes tend to be rela-
tively small and rarely change core application semantics [13, 29].
The same is typically true of code instrumentation added to a pro-
gram for debugging. Based on this observation, we designed DORA
with a d function that has useful properties for testing and debug-
ging. In this context, Section 8 shows that DORA is able to find d-
optimal mutable replays in practice using real-world applications.
Furthermore, Section 6 presents guarantees that can be made about
the optimality of DORA’s approximation algorithm.

A simple example may help further clarify the concept of muta-
ble replay. Figure 1 shows a program that prints the current time in
seconds to stdout. Figure 2 shows a modified version of the orig-
inal program that instead writes the output to a file. Intuitively, we
want the gettimeofday() call in the replay of the modified pro-
gram to return the same time returned in the recorded execution of
the original program. We will show that DORA does this, producing
a d-optimal replay with the cost function described in Section 5.

3. Recorder
DORA’s recorder builds upon our Scribe work on lightweight OS-
level deterministic replay on multiprocessors [16]. The Scribe en-
gine provides four key benefits for mutable replay. First, operating
at the OS level avoids tracking low-level hardware nondeterminism
that is unnecessary for application replay and would significantly
complicate mutable replay. Second, DORA records the execution
of system calls in a manner that enables system calls and their ef-
fects on the kernel to be fully executed during replay. As discussed
in Section 4, this is essential for mutable replay because there are
times when DORA must transition processes from controlled replay
to live execution to enable mutable replay. Third, DORA’s recorder
can record the execution of multiple processes and threads with
low overhead on production systems. Finally, DORA’s recording is
transparent to applications. It does not require changing, relinking,
or recompiling applications or libraries, and it supports programs
written in any programming language.

The recorder operates on a group of tasks (threads and pro-
cesses), which we refer to as a session. DORA records interactions
between the session and its external environment, such as incoming
network packets and nondeterministic interactions between tasks,
in a manner which accommodates application changes during re-
play. DORA also records deterministic information to help detect
changes in an application’s execution path during replay.

The recorder saves the recorded execution to a log file. Figure 3
shows the tail of the log file generated by running the simple pro-
gram in Figure 1. We excluded 83 events related to program ini-
tialization, including execve() and C library bootstrapping events.

// 83 initialization events
--- cut ---
munmap(0xb76e1000, 968e) = 0
rdtsc = 000057ed322904cf
time(NULL) = 0x4f9bd2e7
fstat(1, 0xbff8d684) = 0
mmap(0, 1000, 3, 34, -1, 0) = 0xb76ea000
write(1, 0xb76ea000, 11) = 11
exit(0) = 0

Figure 3. Recorded log file of original execution

The last two initialization events are shown. The rdtsc event corre-
sponds to seeding a random generator from the C library by reading
the time stamp counter of the CPU. The log also includes several
system calls and information about their arguments.

3.1 Nondeterministic Interactions
To replay an execution deterministically, the timing and ordering
of nondeterministic interactions between tasks must be recorded.
To enable mutable replay, DORA must also be resilient to changes
in the application behavior which add or remove nondeterministic
system calls. We highlight how key interactions involving system
calls, signals, and shared memory are handled.

System calls. The ordering of system calls that access shared
resources causes nondeterminism if at least one call modifies the
resource. For instance, a write() and a read() on the same
pipe are related system calls since they access a shared resource
and their relative ordering matters. Preserving the order of related
system calls during replay ensures that recorded racy behavior is
maintained in the replay. To provide this deterministic behavior,
DORA operates at the OS level to capture concurrency at the same
level of granularity as the OS. DORA leverages kernel code that
already serializes access to shared kernel objects to record and
enforce a partial ordering of all related system calls. This is in
contrast to previous approaches [11, 26] which impose a total
ordering of system calls. Such approaches do not scale well for
multicore and do not work for mutable replay. Application changes
are likely to change the number and order of system calls, making
a total ordering of system calls too restrictive for replaying an
execution using a modified program.

Shared objects tracked by DORA include inodes, files, file-
tables, memory maps, process credentials, process states, and
system-wide properties such as the hostname and mount points. To
keep track of access ordering, every resource is assigned a globally
unique identifier and a serial number indicating the order of access.
For each resource a system call accesses, DORA increments its se-
rial number and records its identifier and serial number. This allow
the replayer to deterministically reproduce the access sequence.

Signals. The delivery time of signals is another source of nonde-
terminism. Signals are normally delivered in two steps in the ker-
nel. First, the sender process sends a signal to the target process,
which is marked as having a signal pending. Second, the target
process detects and handles the pending signal when it returns to
user space from kernel space. If the target process is executing in
user space on another core, an inter-processor interrupt will force
it into kernel space, where it will detect the pending signal. Re-
playing this behavior can be challenging because it requires inter-
rupting the target process at the exact same instruction as during its
original execution. Previous approaches [5, 6, 9, 10] have relied on
hardware providing a cycle accurate instruction counter [25], but
this does not work for CPUs without such counters and does not
work for mutable replay. Application changes are extremely likely
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to change the number and ordering of instructions, rendering the
counter values useless.

To address this problem, DORA defers signal delivery to loca-
tions called sync points. Sync points are well-defined locations in
an execution which deterministically cause the process to enter ker-
nel space, such as system calls, traps due to division by zero, and
page faults due to shared memory accesses, as discussed further
below. By only delivering signals at sync points, DORA effectively
converts asynchronous events into synchronous ones and does not
require special hardware or application modifications. This also
makes it much easier to replay using an application with modified
signals. Note that this behavior complies with the POSIX semantics
of signals.

Delaying signal delivery to sync points may introduce some la-
tency in the application. However, our previous work on Scribe [16]
shows that sync points occur quite frequently in common desktop
and server applications. Our evaluation showed that deferred sig-
nals were delayed by less than 100 µs on average with a maximum
delay of less than 1 ms, so this latency is generally imperceptible.
Furthermore, the vast majority of signals were delivered immedi-
ately because the target process was already in a sync point when
the signal was sent. This is not surprising given that processes often
stay in a sync point for a prolonged period of time. For example, a
process blocking on I/O in a system call is in a sync point. While
a process is in a sync point, signals are delivered immediately and
need not be deferred.

Shared memory. Shared memory accesses cause nondetermin-
ism arising from the order in which threads and processes read and
write to the same memory locations. Memory is shared either im-
plicitly, as with threads that share an entire address space, or ex-
plicitly, as with processes that share a common memory mapping.
Since processes typically access multiple locations on a page dur-
ing a given time interval because of spatial and temporal locality,
DORA tracks memory accesses at a page granularity by manag-
ing page ownership with the help of the hardware page protection
mechanism. Each shared memory page is assigned an owner pro-
cess or thread for some time interval. The owner can exclusively
modify that page during that interval and treat it like private mem-
ory. Thus, DORA does not need to track every memory access dur-
ing such periods. Transitioning page ownership from one process
or thread to another is done using a concurrent read, exclusive write
(CREW) protocol on memory pages with some optimizations [16].

To ensure that ownership transitions occur at precisely the same
location in the execution during both record and replay, previous
approaches [5, 6, 9, 10] have relied on cycle-accurate hardware
instruction counters. An ordering this precise is not resilient to
application changes, so it does not work for mutable replay. To
address this problem, DORA defers ownership transitions until the
owner reaches a sync point. As with system calls accessing shared
resources, a memory event is logged for the thread that accesses
shared memory. The event includes a page identifier and a per page
serial number indicating the order of access; this process is similar
to the one for system resources.

DORA implements this CREW protocol by creating a shadow
page table for each thread, which is a private version of the shared
page table. If a thread does not have ownership of a page, its shadow
page table entry (PTE) access privilege bits are cleared. When a
thread tries to access a page owned by another thread, it triggers
a page fault, notifies the owner, and blocks until access is granted.
Note that while the thread is blocked, it is in a sync point, so it can
immediately release pages to other requesting threads, which pre-
vents deadlock [16]. Once the page owner reaches a sync point in its
execution, it transfers the page ownership to the thread requesting
access, which then returns from its page fault handler. Recording
performance can be negatively impacted for applications that ex-

hibit an enormous number of ownership transitions. Nevertheless,
DORA performs well for a wide range of real-world applications as
shown in Section 8.

3.2 Additional Information for Mutable Replay
In traditional replay, all deterministic information need not be
recorded because it will be regenerated during replay, but in muta-
ble replay, the modified application may behave differently even in
deterministic sections of code. DORA’s recorder stores additional
deterministic information in the log to help the replayer detect dif-
ferences between the original and replayed executions as early as
possible. Since DORA provides deterministic replay for unmodified
applications, it does not need to record the additional determinis-
tic information in production, but instead records such information
afterwards by replaying the original execution and recording addi-
tional deterministic information as needed.

As part of this process, DORA records all system calls executed,
not just those involved in nondeterministic interactions. DORA
records the system call number, arguments, and return value for
each system call. For arguments that are pointers, DORA follows
the pointer chain to record the actual memory contents, which are
used during replay to see if two system calls are equivalent. By
recording memory contents instead of the pointer values, DORA
is more tolerant of memory layout changes caused by application
modifications.

DORA also records the virtual addresses of shared memory ac-
cesses, allowing the replayer to match shared memory access to
detect divergence. However, this mechanism means that changes
to the memory layout of writable shared memory affecting page
boundaries can cause DORA to incorrectly replay data races. Fortu-
nately, a recent study of common security patches indicates that a
vast majority of application patches [13] do not make such changes.

Finally, when performing mutable replay, the modified appli-
cation may introduce system calls that are nondeterministic and
environment dependent. DORA addresses this issue by recording
two additional types of information during the original recorded
execution. First, DORA stores additional information for mutable
replay to ensure that nondeterministic actions that occur during the
modified application replay but not during the original recorded
execution are consistent with the recorded execution. For example,
DORA periodically records timing information to ensure that time-
related functions are consistent. If a new gettimeofday() call is
present in a replayed execution, the replayer can report a time that
is consistent with other values replayed from the recorded execu-
tion. Second, DORA records other information about the execution
environment so that new system calls in the modified application
behave as they would have in the environment in which the program
was recorded. For example, the recorder stores host information in
case the modified application requests it with a new uname() or
gethostname() call.

4. Replayer
DORA’s replayer replays the originally recorded execution using ei-
ther the original program or a modified program. It requires that the
execution is replayed on a machine which supports all the recorded
instructions. For example, a program that uses SSE instructions
when it is recorded cannot be replayed on a machine without SSE
instructions unless it is recompiled to use a different ISA. The re-
player uses the recorded log file to generate a separate log file per
task. Each task is replayed independently, but the replayer enforces
the recorded order of access to shared resources.

A key aspect of the replayer is that it can transition a task or
a group of tasks from controlled replay to normal execution. This
feature is essential for mutable replay because a modified program
may have new code to execute that is not part of the recorded
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execution. DORA can run such code at any time because it fully
executes system calls and their effects on the kernel during replay.
Many other replay systems only emulate the effects they have on
userspace [11, 22], but this would prevent normal execution of the
application from being enabled in the middle of replay.

As a task executes kernel code, the replayer compares the ex-
ecution with what is expected in the log file. When the execution
matches expected events in the log, the replayer ensures it behaves
as it did in the original execution. System calls match if they have
the same system call numbers and arguments. When an argument is
a pointer to a buffer, DORA compares the contents of the buffers in-
stead of the pointer addresses. Shared memory access events match
if the access types and page addresses are the same. The replay ends
successfully if all tasks terminate after consuming every recorded
event. A replay that uses an unmodified application will always end
successfully in this manner.

However, if a replaying task is about to execute a code path that
does not correspond to the expected event, the replay has diverged
from the log. The replayer conveys this to the explorer, which
determines how the replayer should resolve the divergence. If the
explorer determines that the replayer should continue replaying
the current log, the unexpected event can be treated in number
of different ways to try to resolve the divergence so that later
events will match events in the log. For simplicity, DORA treats
a divergence as one of two possible types of mutations, an addition
or a deletion.

4.1 Additions
An addition is an event added to the program. For example, a pro-
gram could be modified by adding code that includes a new system
call. A new event is most often a system call, but it can also be a
new signal or shared memory access. When executing an event not
in the log file, DORA has three main responsibilities. First, it must
decide when to execute the new event relative to events already in
the log file. System calls, signals, and shared memory events are of-
ten racy with respect to other processes or threads, so there can be
many possible orderings. Second, it must ensure that the semantics
of the event are consistent with the semantics of the recorded exe-
cution. Finally, it is useful to be able to deterministically reproduce
these decisions in subsequent replays, as explained in Section 5.

To handle these responsibilities, the replayer switches the pro-
cess that encountered the addition from controlled replay into direct
mode. Direct mode switches the respective process to normal exe-
cution and enables DORA’s recorder to record the execution. This
adds a new event to the log and orders it with respect to other events
in the log. The resulting log can then be later deterministically re-
played with the same modified program. Once the process com-
pletes the additional operation, it returns to regular replay mode;
no other process has left regular replay mode. We discuss how this
is done in further detail for new system calls, signals, and shared
memory accesses.

System calls. When encountering a new system call, DORA exe-
cutes the call and records the execution as discussed in Section 3.
This is possible because the replayer fully executes system calls
and their effects instead of just emulating them, ensuring that it
is possible to switch a process to normal execution at any time.
DORA further instruments various system calls to ensure that the
new system call behaves consistently with the recorded execution.
The specifics of this depend upon the semantics of the added sys-
tem call. We highlight system calls that deal with three important
types of issues: environmental or timing information, resource al-
location, and sockets.

For system calls that request environmental information or tim-
ing information, DORA ensures that the return values are made
consistent with the information in the original log. This includes

gettimeofday() and gethostname(). For example, if a new
gethostname() call is executed, DORA already recorded such en-
vironmental information and ensures that the name reported is the
same as what was already recorded.

For system calls that request new resources, DORA ensures
that assigned resources do not conflict with those used by the
replayed execution. For example, if a new page in memory is
allocated, DORA ensures that its address will not conflict with those
used in the original program. If the system call manipulates an
existing shared resource, the respective resource serial numbers are
renumbered to account for the new event.

DORA simply executes new socket-related system calls during
replay except when dealing with data streams originating from
outside the session. To deal with data streams, such as external
sockets, DORA registers fake backends to the corresponding file
descriptor. Socket system calls related to those data streams will
simply manipulate the recorded network data. For example, if a
read() on a network socket is changed to a recvmsg() on the
same socket, DORA provides the appropriate data. If a new read()
from a socket tries to access more data than recorded, 0 is returned
to indicate end of file.

Signals. When encountering a new signal, such as from a modi-
fied application with a new kill() call, DORA needs to determine
when to deliver the signal to the target process. The replayer does
this much as the recorder does. Like the recorder, the replayer de-
fers signal delivery until the target process encounters a sync point.
This ensures that signal delivery can be replayed deterministically
during subsequent replays.

Shared memory. When encountering a new shared memory ac-
cess, DORA needs to determine how to interleave the access with
other accesses. As in recording, a page fault occurs when a replayed
process tries to access a shared page that it does not own, and the
process must acquire ownership of the page. Once the process ob-
tains ownership and completes the memory access, it releases own-
ership to the previous owner at the next sync point to ensure that the
access order in the original execution is respected. The new mem-
ory events are added to the log file and the original serial num-
bers are reordered as necessary to ensure that subsequent replays
based on this log deterministically perform the memory access in
the same way.

4.2 Deletions
A deletion corresponds to the removal of events from the original
log file and implies that the unexpected event matches a later event
in the log. The replayer deletes the intermediate events. There
can be several possible matches for an event if the event occurs
several times later in the original log. DORA identifies possible
matches and reports each possible match to the explorer. Because
it is expensive to process many events and it becomes increasingly
unlikely to find a match that will result in a successful mutable
replay if an extremely large number of events need to be deleted,
DORA imposes a cap on the number of events it can remove for
a deletion. The cap is 10,000 events in our implementation. We
present further detail regarding deletions that involve system calls,
signals, and shared memory accesses.

System calls. Most system calls do not have any side effects in
the log file, so not executing a call itself is all that is necessary
to delete it. If the system call involves a shared resource, DORA
also renumbers the serial numbers for the resource so that its serial
number sequence does not contain any gaps. Deleting system calls
related to external sockets does not remove the incoming data, since
it is preserved as part of the stream of data associated with the
resource. Data that is not consumed from a deleted socket system
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call will eventually be consumed by other remaining or new system
calls.

When a deleted system call was originally associated with the
delivery of asynchronous events, the events must be relocated to
other sync points. For example, consider a program that has a
SIGALRM delivery scheduled on a getpid() sync point. If the
new execution no longer calls getpid(), DORA must choose a
new sync point at which to deliver the SIGALRM signal. DORA
postpones the delivery of asynchronous events until the next sync
point the application encounters. Choosing the next sync point
is better than choosing the previous one because releasing page
ownership prematurely would introduce spurious page faults in the
application and could prevent DORA from respecting the original
page access order. For example, suppose a thread writes to a page
and then releases ownership of the page at the following sync point,
which is on a system call. If the system call is removed and DORA
moved the ownership release event to a previous sync point, it
would occur before the access to the page. This access would then
trigger a page fault and generate a new ownership acquisition event
that may not respect the original ordering. Moving the release of
ownership to the following sync point avoids this issue.

Signals. Deleting a signal involves deleting its source, which is
typically a system call. System calls that deliver signals require ad-
ditional consideration because their effects create multiple events in
the log file. For example, removing a kill() system call must also
remove the delivery of the corresponding signal. During recording,
DORA associates delivered signals with their sources by using an
incrementing global token used across the entire session. When a
signal is about to be delivered, DORA waits for the source to be
triggered or deleted, which respectively delivers the signal or omits
the signal from being delivered.

Shared Memory. When deleting a shared memory access, the
corresponding ownership acquisition event should not be executed.
However, the previous owner still releases its page ownership so
that its behavior is consistent with the original recorded execution.
Asynchronous events associated with a deleted shared memory
event are relocated to other sync points in the same manner as they
are for system calls.

4.3 Going Live
In rare cases, the entire log file is consumed before the modified ap-
plication terminates. This can occur when the original application
crashes, but the patched application avoids crashing. The replayer
allows the session to go live and entirely transition from controlled
replay to live execution. This enables the user to validate the cor-
rectness of the patch. Since DORA faithfully replays kernel actions,
the system is always in a state that allows it to transition to live
execution. Linux namespaces [4] create a consistent environment
for processes before and after they go live. Examples of this are
demonstrated in Section 8.

5. Explorer
The explorer uses the replayer to search for a d-optimal replay.
When the replay diverges, the explorer must determine how to pro-
ceed. If this was the first divergence, the explorer decides whether
the replayer should consider the mutation as an addition or a dele-
tion. If there were previous divergences, the explorer might also
tell the replayer to reconsider a previously detected divergence and
explore a different path. In this case, the explorer provides the re-
player with a new log file. Thus, the replayer needs no knowledge
of the exploration algorithm.

The explorer treats the problem of finding the best mutable
replay as a search through a tree T of possible candidate executions

from a start node e, the execution of the original program, to one of
many goal nodes, which represent executions in E′. This problem
is different from most other search problems because (1) expanding
a node can result in an infinite loop, (2) there can be virtually
infinite goal nodes, and (3) the paths to the goal nodes are not
known beforehand because determining the possible executions of
a program in advance is undecidable.

Since an exact search is undecidable in the general case and NP-
hard even when it is decidable, DORA performs an inexact search
using a modified uniform-cost search. For simplicity, DORA only
considers additions and deletions. It does not consider, for exam-
ple, input fuzzing or trying all possible racy paths. The algorithm
performs the following steps:

1. Initialize T to contain the root node e.

2. Pick an unexplored execution in the tree with the lowest cost
according to the cost function d.

3. Attempt to replay this execution on P ′.

(a) If this replay succeeds, this execution is selected and the
exploration concludes.

(b) Otherwise, the replay diverges on an unexpected event, and
new nodes are added to the graph. One node represents an
addition and the others correspond to each possible deletion.
Each node has an associated log file so that nondeterminism
in added system calls is reproduced exactly across replays.
Go to step 2.

A useful feature of the explorer is that the end result of a
replay up to a given node is recorded. Since this recording can be
deterministically replayed, a mutable replay is easily reproducible.
Furthermore, it is easy to compare two logs to see the differences
between two executions. For example, a developer can compare the
log of the originally recorded execution with the log of a mutable
replay to understand how application modifications affected the
replay.

For simplicity, we have implemented the explorer algorithm
by replaying a new execution from the beginning of the log upon
divergence. In reality, there is no inherent reason for executions to
be replayed from the beginning since each child node’s log only
differs from its parent node’s log after the point of divergence.
For example, a checkpoint could be taken just before divergence
occurs. Nodes created because of this divergence could replay from
the checkpoint instead of from the beginning of execution [14, 15,
20].

While any function satisfying the properties specified in Sec-
tion 2 can be used for d, we present a simple function that has
useful properties for debugging purposes. Since matches are desir-
able and additions and deletions are undesirable, each match has
a cost of −M and each addition or deletion has a cost of +1,
where M > 1. We use a value of 3 for M in our prototype, but
the process of selecting a mutable replay was relatively insensitive
to the specific value. Using a negative cost for matches means that
the explorer is unlikely to backtrack after making many contigu-
ous matches. This also means that the uniform-cost search is not
guaranteed to find the optimal replay even amongst the nodes it
considers (additions and deletions). We made this decision because
the number of nodes it would need to consider to guarantee cor-
rectness is exponential. Since the future execution of a program is
unknown, even potential executions which seem very unpromising
could theoretically match many later events in the log file and ob-
tain a very good score. Thus, the search would effectively become
a breadth-first search if d could only return non-negative numbers.
Event logs may have billions of events long, so this would not be
feasible.
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munmap(0xb76e1000, 968e) = 0
rdtsc = 000057ed322904cf

+ brk(NULL) = 0x9870000
+ brk(0x9891000) = 0x9891000
+ open("output", 577, 438) = 500

time(NULL) = 0x4f9bd2e7
+ fstat(500, 0xbff8d674) = 0
- fstat(1, 0xbff8d684) = 0

mmap(0, 1000, 3, 34, -1, 0) = 0xb76ea000
+ write(500, 0xb76ea000, 11) = 11
- write(1, 0xb76ea000, 11) = 11

exit(0) = 0

Figure 4. Mutable replay of modified program

Example. To make this process more clear, we return to the ex-
ample introduced in Section 2, in which a program that prints the
time to stdout is modified to write the time to a file. Figure 4 il-
lustrates how the explorer replays the modified program in Figure 2
using the recorded execution shown in Figure 3 of the original pro-
gram in Figure 1. The explorer starts by replaying the original log
file on the modified program. The complete original log file con-
tains 90 events, but Figure 4 omits initialization events, such as
execve() and bootstrapping code from the C library.

The replayer matches the first 85 events successfully, which are
all system call events, resulting in a cost of -255. At this point, the
replayer encounters a brk() that does not match the time() call
in the original log file and diverges. Upon divergence, DORA can
treat brk() as an added system call or search the original log for
a brk() call and delete intermediate events. Since no other call to
brk() occurs in the log file, only the addition path is considered,
resulting in a cost of -254 and an additional node in the tree of
candidate executions.

Following this algorithm, replayer adds two more system calls:
another brk() and open(), resulting in a cost of -252. A time()
call is executed and successfully matches the expected call in the
original log, ensuring that the time returned in the replayed execu-
tion is the same as the time in the original log. The match lowers
the cost of the execution path to -255.

The changed program then executes an fstat(500, ...) in
the replaying execution. Although the system call number is the
same as the fstat(1, ...) in the log, the file descriptors passed
as the first argument are different. This is treated as a mismatch. No
subsequent matching fstat() calls are in the log, so this is treated
as an another addition, increasing the cost of the execution path to
-254.

Next, the application diverges on the call to mmap() since it
does not match fstat(1, ...). For the first time in this example,
the divergence can lead to a deletion or addition since there is
a matching mmap() in the original log. The explorer creates two
nodes, and explores the unexplored node with the lowest cost. In
this case, these two nodes are the only unexplored nodes. The
addition node costs -253 since there is a one point addition penalty.
The deletion node costs -256 because there is a one point deletion
penalty for removing one node and a three point bonus for matching
mmap(). Therefore, the deletion node is selected. The addition and
deletion of fstat() is effectively a replacement of the system call.

The modified program then runs a write(500, ...) in the
replaying execution which is different from the write(1, ...) in
the log. Although the function calls are the same, the file descriptors
are different, so this is treated as a mismatch. Since no subsequent
matching write() calls are in the file, this must be treated as an
addition, increasing the cost of the execution path to -255.

Finally, the program calls exit(), which diverges from the
write(1, ...) in the original log. The divergence can lead to

an addition of exit group() or a deletion of write(1, ...),
matching the exit group() in the original log. The addition node
costs -254, the deletion node costs -257, and the unexplored node
which added mmap() costs -253. The deletion node is selected.

Since the end of the log file has been reached, the explorer has
found a successful replay with a cost of -257 and terminates. In
this case, the explorer has successfully found a d-optimal replay.
Although the explorer cannot prove this, the optimality of this
replay is evident given the nature of the application modification.

From this simple example, we can observe that small code
changes may significantly impact the behavior interactions of the
application with the kernel API. The fopen() library call inter-
nally calls malloc(), resulting in two new invocations to brk().
Thus, even minor changes to high-level source code can result in
relatively large changes to the low-level executable code.

6. Properties
We can make several useful guarantees about the behavior of DORA
for certain classes of application changes.

PROPERTY 1. DORA deterministically replays the original execu-
tion if the program is unmodified.

In other words, DORA performs traditional deterministic record-
replay when the program is unchanged. This property also implies
that DORA provides d-optimal mutable replay for all d for unmod-
ified programs.

PROPERTY 2. If all explored mutations are safe, DORA determin-
istically replays all events in the original execution with the modi-
fied program.

For our d, a safe mutation is an addition that does not change any
state which is read by the original execution. These additions may
store state which is later read, but the original execution must not
access this new data. This guarantee is quite useful for debugging
because it implies that all behavior in the original program, includ-
ing race conditions, will be preserved deterministically.

For example, a printf() changes the internal state of the
program by modifying an internal buffer, but returns the program
to its original state, assuming proper newlines. Therefore, adding
a printf() to debug a race condition always preserves recorded
races because it will not change the relative ordering of events in the
log. DORA can also handle the creation of new files. Any new calls
to open() will receive a file descriptor not used by the original
execution, so DORA guarantees that the original behavior of the
program will be unaffected.

As another example, consider memory changes, for both shared
and private regions of memory. First, reading the value of a variable
in memory is safe. This is true even if the read is from shared
memory and triggers a page fault leading to a temporary ownership
transition. Additionally, the program can allocate and write to pages
that are unused by the original execution. To avoid conflicts, DORA
always assigns new memory allocations to a reserved area that is
isolated from the original memory mappings.

PROPERTY 3. DORA does not guarantee deterministic replay
when given a modified application with arbitrary modifications.

As explained in Section 4, DORA does not evaluate all possible
interleaving of additions. For example, when a printf() is added
in two different threads without locking, the order in which the
calls are executed is variable. DORA picks the first possibility it
encounters during replay and enforces this ordering for subsequent
replays. However, this ordering is not enforced across separate
invocations of the explorer.
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PROPERTY 4. DORA can deterministically replay a mutable re-
play of a modified application.

DORA’s explorer outputs the replay it selects to a log file. Thus,
DORA can deterministically replay the original execution of the ex-
plorer using the modified program. This enables exact reproduction
of a previously found replay, allowing DORA to be used iteratively.

7. Limitations
DORA has several limitations as it has no knowledge of application
semantics. As a result, it only supports replay across application
changes that do not alter core application or execution semantics.

For example, an exploit might add a new entry to a MySQL
database. This entry would be assigned a particular id by MySQL,
and would affect the ids of all later entries. A patch that removes
the exploit would also remove the created entry, resulting in a
mismatch between the ids assigned during replay and the recorded
assignments. DORA would not find a d-optimal mutable replay
because the core semantics of the execution have changed.

Additionally, DORA currently does not effectively support ma-
jor changes in the layout of shared memory. If objects are relocated
from a page to another, DORA cannot always preserve the original
access ordering since DORA manages shared memory at the page
level. DORA could be modified to track objects instead of pages
by instrumenting the application. Even without this functionality,
however, DORA is able to handle some changes to MySQL, which
heavily uses shared memory.

Finally, DORA currently does not support process/thread layout
changes. For example, if an application was originally recorded
with 10 threads running, and is now reconfigured to run with 5
threads as part of the application modification, DORA does not
provide a way to find a good mutable replay. Similarly, DORA has
difficulty with applications that use green threads as small code
changes may result in radically different schedules.

Thus, there are some types of changes for which DORA will
not find the d-optimal replay. Fortunately, DORA produces enough
information for the user to identify when these conditions occur.
This allows the user to distinguish behavior caused by an applica-
tion change from behavior due to DORA’s limitations and makes
DORA a useful tool for debugging and validation.

These conditions may seem restrictive, but they are often not
an issue in practice because patches rarely change core application
semantics. In a study of 60 patches each for MySQL, Apache,
OpenSSL, and Squid, 83% resulted in only minor changes to the
application behavior. Analysis of various security patches showed
that over 75% only changed applications in minor ways [13]. This
makes sense, as patches often attempt to fix an edge case in an
application.

8. Evaluation
We have implemented a prototype of DORA in Linux. The recorder
and replayer run in kernel space while the explorer runs in user
space. Although the prototype only instruments a subset of the
Linux kernel API, we demonstrated the functionality of this proto-
type in diagnosing and fixing bugs and measured its performance
overhead with nine widely used real-world, multi-process, and
multi-threaded applications and 32 different application changes
involving thousands of lines of code. For our experiments, we used
version 2.6.35 of the Linux kernel, Python 2.6.6, Cython 0.14,
and UnionFs-Fuse 0.23. Measurements were done on a set of HP
DL360 G3 servers, each with dual 3.06 GHz Intel Xeon CPUs,
4 GB RAM, and dual 18 GB local disks.

We recorded a wide range of applications with various work-
loads that exhibited bugs, as listed in the third column of Table 2.

Name apache-upgrade redis-upgrade
Start Version Apache 2.2.19 Redis 2.4.1
Upgrades 3 (2.2.20 - 2.2.22) 12 (2.4.2 - 2.4.13)
Commits 277 137
LOC 5179+, 388- 2942+, 1154-
Workload httperf 0.8 redis-benchmark

Table 1. Application upgrades

We verified that DORA can deterministically replay the original
recorded applications and then replayed the executions with mod-
ified applications. Section 8.1 shows that DORA can replay these
workloads using reconfigured or modified applications with addi-
tional debugging or other instrumentation. Section 8.2 shows how
DORA can replay the exploits in Table 2 using patched versions of
the applications to help developers verify that the bug patches suc-
cessfully resolve the problems. It also shows how DORA can replay
the workloads listed in the last column of Table 2 using the patched
versions of the applications to help system administrators verify
that the patches do not introduce errors in production workloads.
Section 8.3 shows that DORA can verify production workloads on
a series of release upgrades for the applications listed in Table 1.
Finally, Section 8.4 presents record-replay overhead for the pro-
duction workloads.

8.1 Debugging and Diagnosis Techniques
We used a wide range of debugging and diagnosis techniques with
the workloads listed in the third column of Table 2. Since our work
focuses on diagnosing and fixing bugs, most of the problems in-
volve known security vulnerabilities, as indicated by their Com-
mon Vulnerabilities and Exposures (CVE) identifiers. However, the
apache-log scenario shows a previously unknown bug in Apache
that we found with DORA, and the Redis scenario shows how to
add retroactive logging without discussing a specific bug.

For each of these exploits, we show how DORA can be used
to diagnose the cause of a bug. We consider debugging techniques
an experienced developer might apply to identify the root cause
of each problem. Table 3 lists the application changes needed to
use various debugging and diagnosis techniques for each scenario.
DORA successfully found the d-optimal replay for all of these
application changes. Table 3 shows the needed replay mutations.

apache-log was originally intended to show how DORA could
be used for retroactive logging, but ended up showing DORA find-
ing a previously unknown Apache bug [1]. We wanted to use DORA
to add user agent and referrer information to Apache log files, since
these could provide useful usage statistics for a website adminis-
trator. Although the default Apache logging configuration will not
log this information, DORA records all HTTP header information
that the server receives. Thus, an administrator using DORA could
modify a configuration file to include this information and replay
the recorded execution with the modified configuration to generate
the desired web server log.

However, doing this yields a log file with incorrectly truncated
entries. This behavior was due to a previously unknown bug in
Apache. In several places in code, Apache mistakenly assumes that
a call to write() will either write the desired amount of bytes or
fail, instead of checking the return value and calling write() until
all the required bytes are written. We submitted a bug report and
patch to Apache [1] which was accepted into the codebase.

apache-sec records an exploit of a heap overflow vulnerability
that launches a denial of service attack against an Apache web
server using only a handful of requests. By examining Apache’s
log, an experienced Apache developer will notice oddities in some
of the requests, but will not have enough information to identify

134



Name Description Problem/Exploit Workload Production Workload
apache-log Apache 2.4.2 web server Log format change (Apache Bug 53131) httperf 0.8 with 100KB web page
apache-sec Apache 2.2.19 web server DoS attack (CVE 2011-3192) httperf 0.8 with 100KB web page
exim Exim 4.69 mail server Privilege escalation (CVE 2010-4344) Send 1000 1KB e-mail messages
mysql MySQL 5.0.67 database server Unauthorized access (CVE 2008-2079) sql-bench

nginx Nginx 0.8.14 web server Crash server (CVE 2009-2629) httperf 0.8 with 100KB web page
proftpd ProFTPD 1.3.0 ftp server Crash server (CVE 2006-5815) 100 clients fetch 10MB file
redis Redis 2.4.11 key-value store Request with insufficient logging redis-benchmark with 50 clients
squid Squid 3.1.7 http proxy server DoS attack (CVE 2010-3072) ab 2.3 with cached facebook.com
wget wget 1.11.4 http client Create arbitrary file (CVE 2010-2252) 100 requests to http://www.cnn.com

Table 2. Application scenarios

Name Debugging Change Replay Mutations
apache-log Modify log format in configuration file Add 1 fstat(), 1 mmap(), and 3 write() per request
apache-sec Add print statements for debugging Add 1 fstat(), 1 mmap() and then 2 write() per request
exim Recompile with debugging options enabled None
mysql Add conditional print statements for debugging Add 1 fstat(), 1 mmap(), 1 memory event, 12 write()

nginx Change the config file to enable debug messages Add 508 write(), delete 1064 syscalls
proftpd Recompile with debugging options enabled Add 1 close()

redis Log erroneous client requests Add 1 open(), at least 3 write() and 1 close() per request
squid Save parsed requests to file Add 1 open(), at least 10 write() and 1 close() per request
wget Change language from Italian to Japanese Replace 17 write(), 24 mmap(), 2 open(), and delete 5 syscalls

Table 3. Application modifications for debugging

the bug with the default logging settings. In particular, it would
be helpful to have more information about the range headers of
the requests. Using DORA, a developer can add print statements to
Apache, replay, and recognize that the problem was due to incorrect
handling of overlapping range headers. Five system calls were
added for each request as a result of the additional print statements.

exim involves an exploit that crashes the mail server using a
heap overflow vulnerability in a buggy string formatting function
that allows attackers to execute arbitrary code. If this crash was
recorded in the wild, it would be helpful to use GDB to analyze
the program at the time of the crash. However, production servers
are almost always optimized and compiled without debugging sym-
bols. Thus, a traditional record-replay system would be unable to
help. Using DORA, a developer can recompile the program, replay
the exploit using the recompiled program, and hook GDB to the
replayed program before it crashes. When investigating the stack
trace, the nature of this attack becomes clear. No mutations were
needed in the d-optimal replay, despite various memory layout
changes to the program as a result of recompilation.

mysql involves an exploit which maliciously uses symlinks to
elevate permissions to a database. By default, MySQL disables
logging. Thus, a developer trying to discover how a malicious user
gained access to a database will have no information about which
commands were executed. Using DORA, the developer can modify
the program to log executed commands, then replay the exploit
using the modified program. This process can be repeated, allowing
the developer to iteratively add print statements to different sections
of the code and pinpoint the bug. To demonstrate this, we added
enough print statements to identify the bug. DORA found the d-
optimal replay, which had mutations of fourteen added system calls
and a shared memory event.

nginx involves running Nginx, a high-performance HTTP
server, and crashing one of its worker processes with a malicious
HTTP request that uses a buffer underflow attack to execute arbi-
trary code. The default log does not show what actions were taken
on each request, which makes debugging difficult. Using DORA,
the developer can modify the configuration file to enable verbose

logging and replay the exploit with the modified configuration. To
generate verbose logs on a workload exhibiting the exploit, 508
write() calls were added and 1064 system calls were deleted.

proftpd records an exploit that crashes the FTP server by tak-
ing advantage of an off-by-one error to execute arbitrary code. As
with the exim use case, GDB would be a helpful debugging tool,
but a production server is unlikely to be compiled with debugging
symbols. With DORA, a developer can recompile with the Makefile
configuration for debugging, replay the exploit using the recom-
piled program, and hook GDB to the replayed program before it
crashes. The resulting stack trace makes it easy to diagnose the
problem. A replay mutation of adding 1 close() was needed to
use the debugging configuration.

redis involves recording Redis, an in-memory key-value store
often used in production applications as a caching layer on top of a
general purpose database. This use case does not involve a specific
bug but instead shows how a developer can add logging to Redis
and replay this modification on the original recording, effectively
turning on retroactive logging. Replay mutations of adding at least
five system calls per request was needed. The number of additions
varied based on the nature of the request. For instance, a malformed
request triggered more logging than a proper request.

squid involves an exploit that crashes the Squid daemon by
sending an empty Expect HTTP header parameter. The default
request logging does not provide enough information about the
header to determine the cause of the bug. Using DORA, a developer
can modify the program to log each request to a file with the
complete header information of the request, then replay a recording
of the exploit with the modified program. This allows the developer
to see that the requests which crash the server have empty header
parameters and narrow down the bug to a very specific section of
code. At least 12 system calls were added per request. The exact
number varied depending on the type of request.

wget involves downloading a file from a malicious server that
does a 301 redirect. A vulnerability in wget allows the server to
choose the destination filename. Remote servers can create or over-
write arbitrary files and even execute arbitrary code by writing dot-
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file in a home directory. Because this behavior depends on a live
server behaving in a particular way, this issue may be difficult to
reproduce and debug if it is not noticed immediately. Addition-
ally, to demonstrate the robustness of DORA, we suppose that an
Italian developer observes this behavior and wants to show it to a
Japanese developer who cannot reproduce the results because the
server is no longer available. Using DORA, the second developer
can replay wget in a different language, enabling collaborative de-
bugging across international borders and language barriers. While
this scenario is tongue-in-cheek, the translation use case is novel
and has interesting applications. The replay involved replacing 43
system calls and deleting 5 system calls.

8.2 Patch Validation
For each bug exhibited by the workloads listed in the third column
of Table 2, we replayed the bug-inducing workload on the patched
application to verify that the patch successfully fixed the bug.
Table 5 lists the number of lines of code added and deleted for
each patch and the mutations needed for each replay. Redis is not
included; since it did not involve an application bug, no patch was
necessary. Table 5 shows three interesting points.

First, DORA found the d-optimal replay even with substantial
patches of over 400 lines of code changed. The replay mutations
that were needed to find the d-optimal replay varied. Many involved
executing different system calls, but others involved changes in
signal delivery and shared memory accesses. This demonstrates
DORA’s ability to replay despite a broad range of application modi-
fications so long as the core application semantics remain the same.

Second, we show that production workloads can be replayed us-
ing patched applications to verify that the patch does not introduce
errors into those workloads. For each workload listed in the last col-
umn of Table 2, DORA recorded the workload using the unpatched
application, then found a d-optimal mutable replay using patched
versions of each application. We examined the output of each mu-
table replay and verified that the patches did not change application
behavior when running the workload. We also compared each origi-
nal recorded log with the log of the corresponding mutable replay to
verify that the patches did not change the application execution in
unexpected ways. System administrators could use this technique
to test patches before deploying them to have more confidence that
they will not break their production systems.

Third, Table 5 shows that the go live feature of the replayer can
be used to validate patches even when a recorded exploit crashes
a process. The exploit for Nginx caused a worker to crash, and the
Squid exploit crashed the entire application. In both cases, DORA
does not replay the original SIGSEGV and allows the applications
to go live and handle new requests. Although a worker process
crashed in the proftpd scenario, DORA did not go live because the
proftpd master forks a new worker per connection and is resilient
to worker crashes, allowing subsequent requests to be replayed
without going live.

8.3 Release Upgrades
To demonstrate another use case of DORA, we took two server
applications and recorded them running the benchmarks we used as
production workloads as listed in Table 1. We then replayed those
executions over a series of 15 release upgrades to verify that the
workloads continued to function correctly across upgrades. DORA
found the d-optimal replay in all of these cases.

apache-upgrade consists of a series of upgrades of Apache
over an 8 month timeframe from 2.2.19 (May 21, 2011) to 2.2.22
(Jan 30, 2012). The upgrades involved changes of more than 5000
lines of code and 277 separate commits. Using DORA, we recorded
version 2.2.19 running httperf, then replayed the recording with
each subsequent version. We repeated this process for versions

Name Recording Storage Replay
Overhead Growth Speedup

apache-log 9.3% 31 KB/s 3.8x
apache-sec 4.8% 18 KB/s 1.9x
exim 4.3% 30 KB/s 7.2x
mysql 4.7% 9.6 KB/s 1.1x
nginx 9.7% 15 KB/s 2.2x
redis 2.6% 91 KB/s 1.3x
proftpd 4.1% 22 KB/s 2.6x
squid 8.2% 124 KB/s 1.2x
wget 2.2% 19 KB/s 11x

Table 4. Mutable replay performance

2.2.20 and 2.2.21. DORA successfully replayed all of these ap-
plication changes. This required various add and delete mutations
of read() and brk() calls. Note that we also tried this experi-
ment starting with Apache 2.2.18, but DORA was unable to replay
from that version due to core library modifications that caused large
shared memory layout changes between Apache 2.2.18 and 2.2.19.

redis-upgrade consists of a series of upgrades of Redis over a 7
month timeframe from 2.4.1 (October 17, 2011) to 2.4.13 (May 2,
2012). The upgrades involved changes of more than 4000 lines of
code in 137 separate commits. Using DORA, we recorded version
2.4.1 running redis-benchmark, then replayed the recording with
each later version. We also repeated this experiment for version
2.4.2 and upgrades 2.4.3 to 2.4.13, version 2.4.3 and upgrades
2.4.13 to 2.4.4, and so on. DORA successfully replayed all of these
application changes. They required add and delete mutations of
12 different system calls, including open(), close(), read(),
write(), mmap(), munmap() and time() system calls.

8.4 Performance
To quantify the performance costs of using DORA, we measured
the runtime overhead of recording and replaying the production
workloads listed in the last column of Table 2. Table 4 shows the
overhead of recording the production workload with the unpatched
application, the storage growth rate of recording, and the speedup
when replaying the recording with the patched application. Unless
otherwise noted, default configuration options were used for all
applications. The standard deviations for all measurements were
negligible.

The recording overhead in all cases was less than 10% even for
CPU-bound workloads designed to stress application performance.
For example, Squid performance was measured with a fully cached
web page, resulting in a CPU intensive workload. Even with these
unfavorable workloads, the results indicate that DORA can be used
in production systems with modest overhead.

Similarly, the time to replay the original recording on the orig-
inal application was in all cases faster than the original execution;
in one case, it was over an order of magnitude faster. This is be-
cause DORA can bypass blocking system calls that sleep. Since
production servers are likely to sleep more and service requests less
frequently than in our benchmarks, replay speedup will be much
higher in practice.

While recording, the log was streamed through gzip before be-
ing persisted to disk. The storage growth rates ranged from 10 KB/s
to 130 KB/s. These storage requirements are modest considering
our workloads. DORA would take almost three months to fill a 1
TB drive at the worst of these rates, which makes it an affordable
and practical solution.
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Name Patch LOC +/- Replay Mutations
apache-log 39+, 39- Add 1 write() per truncated log entry
apache-sec 292+, 154- Add 1 write() and replace 1 writev() per request
exim 7+, 0- Delete 18 syscalls, add 29 syscalls
mysql 170+, 60- Add 29 lstat(), delete 79 syscalls, add 1 write(), delete 15 and add 8 memory events
nginx 9+, 5- Delete 1 write() and replace 1 writev() per request, then go live on crash
proftpd 17+, 3- Delete 694 syscalls, add 38 syscalls, delete a SIGSEGV
squid 38+, 33- Delete a SIGSEGV, 1 close(), 1 stat(), 1 write(), then go live
wget 43+, 12- Replace 9 syscalls among stat(), write(), open(), utime()

Table 5. Application patches tested against exploits

9. Related Work
Many record-replay approaches have been proposed to improve
bug reproducibility debugging [2, 3, 7, 11, 18, 19, 21, 22, 26, 27],
but none allows for mutable replay. Some approaches propose
relaxing the requirement of deterministic replay for performance
reasons. For example, ODR [2] proposes only ensuring that the
output is deterministically replayed for replay debugging. This
is quite different from mutable replay, in which the output may
change due to application changes.

Some record-replay systems can support a form of deterministic
replay that may differ in limited ways from the original recorded
execution. Crosscut [8] can reduce the information recorded in a
log so that, for example, sensitive information can be purged be-
fore replay. Our previous work on Scribe [16] replays a recorded
application execution until a specified point, and then transitions to
live execution instead of replaying the rest of the log. Our previous
work on Racepro [17] detects process races due to dependencies
in the ordering of system calls by recording an application execu-
tion to a log, identifying a pair of system calls that may be racy,
truncating the log at the occurrence of the pair of system calls, in-
verting their order, and then replaying the truncated log with the
reordered system calls to detect process races. However, Racepro
only supports changes that reorder system calls and does not sup-
port changes in the middle of replay. None of these approaches sup-
ports mutable replay, but mutable replay could be useful for some
of these systems. For example, Racepro could use mutable replay to
avoid replay divergence and more effectively detect process races.
Another race detection tool [19] uses the iDNA [3] record-replay
framework and would also benefit from mutable replay.

A few record-replay systems allow new code to be run while
replaying a recorded execution [7, 12]. However, this new code
cannot have any side effects on the program. If a replay diverges
due to new code, these systems must rollback to a point prior to the
divergence for the replay to continue. In contrast, DORA allows re-
play to continue even after divergence; side effects due to new code
are preserved. Moreover, unlike DORA, these other approaches pre-
vent application developers from leveraging existing configurable
application functionality and instead require that developers learn
a new complex system. Because these other approaches work at a
VM level, they are fundamentally limited in their abilities to per-
form mutable replay and support the kind of application changes
supported by DORA. Finally, none of these other approaches work
on multicore or multiprocessor systems.

A concept of mutable replay was mentioned as a part of
DSF [28], a Java-only framework for implementing distributed
algorithms. DSF recognized that existing replay approaches did
not allow adding print statements for debugging. DSF requires
that all applications to be written using its framework, requires
modification to the applications, and is primarily simulation-based.
Furthermore, DSF presents no algorithms or mechanisms for ac-
tually doing mutable replay, and presents no experimental results
demonstrating the ability to do mutable replay. More recently, a

study has assessed the potential utility of mutable replay on real
patches [13], though no mutable replay system or results are pre-
sented. DORA presents the first system that achieves transparent
mutable replay, requires no application modifications, and demon-
strates experimentally that mutable replay can be used with real
applications.

Alternative techniques have been proposed to help with patch
validation, one use case of mutable replay. Band-aid patching [23]
and delta execution [29] instrument patches to identify portions of
an application that have changed, execute both the unpatched and
patched code paths either serially or in parallel, and select the re-
sults from one path or merge the results from both paths. However,
these approaches incur substantial performance overhead. Many
simple patches cannot be handled by these approaches, such as sim-
ple changes to data structures. Unlike DORA, these approaches do
not allow patch validation on a recorded bug or offline patch val-
idation on a production workload. Furthermore, they are designed
for patch validation only and are not effective for debugging.

Self-healing systems have been proposed which record the oc-
currence of a bug, then automatically generate and apply a patch
as a temporary fix to the problem [24]. DORA is complementary
to these systems and can be used to verify that a generated patch
successfully fixes problems that occurred in the original workload.

Finding a mutable replay has some similarities to the edit dis-
tance and longest common subsequence problems, which have ap-
plications to approximate string matching and bioinformatics. In
those problems however, both sequences being used for matching
are known in advance. In contrast, mutable replay must match a
known execution log with an execution sequence that is not known
in advance, so these algorithms cannot be directly applied.

10. Conclusions and Future Work
DORA introduces the concept of mutable record-replay and is the
first transparent mutable record-replay system. It enables, for the
first time, a recording of an application execution to be replayed
using a modified version of the application for a large class of ap-
plication changes. This is made possible by the use of lightweight
operating system mechanisms to record and replay without impos-
ing unnecessary timing and ordering constraints. DORA introduces
an explorer that directs the replay mechanism to identify a mutable
replay of the modified aplication that minimizes differences with
the original unmodified application execution.

Our experimental results on a Linux prototype demonstrate
that mutable replay is feasible across a wide range of real-world
applications and application changes which can reach thousands
of lines of code, even without support for major changes to core
application semantics. We show that mutable replay is useful for
enabling common debugging techniques not possible with previous
record-replay systems. We also show that mutable replay enables
validation of security patches against both exploits and production
workloads. This is all accomplished without requiring source code
modifications and with low recording overhead, enabling usage on
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production systems. These results demonstrate that mutable replay
has the potential to enable new techniques for debugging and patch
testing and validation, which can lead to substantial improvements
in software reliability and developer productivity.

We hope to explore a number of directions in future work. While
we have explored a few ways in which mutable replay can be used
in multicore debugging and patch validation, DORA provides a
foundation for exploring other uses of mutable replay as well. We
have evaluated a particular cost function and exploration algorithm
for mutable replay, but much more can be done to consider alter-
natives that may be particularly suited for other use cases. Further-
more, it would be beneficial to perform instrumentation at a higher
level: if runtime systems like the Java Virtual Machine or the Ruby
MRI were instrumented to work with DORA, mutable replay could
be an even more effective tool to reproduce, diagnose, and fix soft-
ware bugs for Web and mobile applications.
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